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Abstract

Lung cancer remains a leading cause of cancer-related mortality
worldwide, necessitating advanced research to unravel its molecular
underpinnings. This study investigates the cell-type origins of differentially
expressed genes (DEGs) associated with lung cancer by employing a
comprehensive computational approach to analyze data from the Human
Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA). Our findings
enhance the understanding of the genetic underpinnings of lung cancer,
highlighting the necessity of integrating multiple genomic datasets to
effectively characterize gene expression variations and their clinical
implications. A significant focus of this research is on how smoking status
(current, former, never smoker) influences cell-type-specific gene
expressions within lung cancer patients, providing a nuanced
understanding of how environmental factors shape genetic outcomes. By
utilizing linear regression and other statistical methods, we identify
distinct DEGs that vary according to smoking history, offering insights into
the molecular impact of smoking on gene expression and pinpointing
potential pathways for targeted interventions. Additionally, the study
addresses the limitations of current methodologies and demonstrates the
advantages of employing a diverse array of analytical approaches. Future
directions will expand these investigations to include a broader range of
environmental and genetic factors affecting lung cancer, aiming to refine
our understanding of gene-environment interactions in this complex
disease. This expansion has the potential to pave the way for more

personalized therapeutic strategies, ultimately improving patient care.

Keywords

Genomic Research, Lung Cancer, Computational Biology, Marker Genes,
Differentially Expressed Genes (DEGs), Human Protein Atlas (HPA), The
Cancer Genome Atlas (TCGA), Bioinformatics, Statistical Analysis,

Personalized Medicine, Molecular Oncology



Sammendrag

Lungekreft er fortsatt en ledende arsak til kreftrelatert dgdelighet globalt,
noe som krever avansert forskning for a avdekke de molekylaere
grunnlagene. Denne studien undersgker celletype-opprinnelsen til
differensielt uttrykte gener (DEG) assosiert med lungekreft ved a8 bruke en
beregningsmetode for 3 analysere data fra Human Protein Atlas (HPA) og
The Cancer Genome Atlas (TCGA). Vare funn forbedrer forstaelsen av de
genetiske grunnlagene for lungekreft og understreker ngdvendigheten av
3 integrere flere genomiske datasett for & effektivt karakterisere
genuttrykk og deres kliniske implikasjoner. Et fokus i denne forskningen
er hvordan rgykerstatus (naveerende, tidligere, aldri reyker) pavirker
celle-type-spesifikke genuttrykk hos lungekreftpasienter, og gir en
nyansert forstaelse av hvordan miljgfaktorer former genetiske utfall. Ved
a bruke lineaer regresjon og andre statistiske metoder identifiserer vi
distinkte differensielt uttrykte gener (DEG) som varierer etter
réykehistorikk, og tilbyr innsikt i réykingens molekylaere innvirkning pa
genuttrykk samt fremhever potensielle veier for malrettede
intervensjoner. Studien tar ogsa for seg begrensningene ved ndveaerende
metoder og demonstrerer fordelene ved 3 bruke et bredt spekter av
analytiske tilneerminger. Fremtidige retninger vil utvide disse
undersgkelsene til 8 inkludere et bredere spekter av miljgmessige og
genetiske faktorer som pavirker lungekreft, med mal om & forbedre var
forstaelse av gen-miljg-interaksjoner i denne komplekse sykdommen.
Denne utvidelsen har potensial til 8 bane vei for mer persontilpassede

terapeutiske strategier og i siste omgang forbedre pasientomsorgen.

Ngkkelord

Genomforskning, Lungekreft, Beregningsbiologi, Markgrgener,
Differensielt uttrykte gener (DEG), Human Protein Atlas (HPA), The
Cancer Genome Atlas (TCGA), Bioinformatikk, Statistisk analyse,
Personalisert medisin, Molekylaer onkologi
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1 Introduction

In this thesis, we delve into the intricate realm of bioinformatics, focusing
on unraveling the cell-type origins of differentially expressed genes. Gene
expression is the biological process where genetic instructions are used to
synthesize gene products. These products are usually proteins, which go
on to perform essential functions in the body (Nelson & Cox, 2021). The
process begins with the DNA in the cell nucleus, where each gene serves
as a code, or set of instructions, for the synthesis of a particular protein.
The first step in this process is transcription, where a segment of DNA is
copied into RNA (specifically messenger RNA or mRNA) by the enzyme
RNA polymerase (Nelson & Cox, 2021).

This mRNA strand carries the genetic information from the DNA out of the
nucleus into the cytoplasm. Here, in a process known as translation, the
MRNA serves as a template to guide the synthesis of the protein it
encodes (Nelson & Cox, 2021). Ribosomes read the sequence of the
MRNA bases, and, using this sequence, they assemble amino acids in the
correct order to produce the protein (Nelson & Cox, 2021). This flow of
information from DNA to RNA to protein is a cornerstone of cellular
function and the central dogma of molecular biology (Nelson & Cox,
2021).

The field of bioinformatics has witnessed significant advancements in gene
expression analysis technologies, particularly since the early 2000s
(Gasperskaja & Kucinskas, 2017). These technologies have been crucial in
probing biological processes and identifying potential disease mechanisms.
Clinicians often collect tissue samples from patients and healthy controls
to analyze genes with differing expressions in diseased versus control

samples. Such studies have led to the discovery of biomarker signatures



for diseases like breast cancer, necessitating differentiated treatments
(Smith et al., 2008). While these analyses provide insights into potential
causative factors, they can be misleading if sample differences are

attributed to variations in cell type composition.

Since the completion of the human genome sequence in 2003, the
annotation of the genome and advancements in sequencing technologies,
such as Sanger and Next-Generation Sequencing (NGS), have enabled the
identification of variations in human coding and non-coding sequences
(Gasperskaja & Kucinskas, 2017). In bioinformatics, the development of
RNA Sequencing (RNA-seq) and Single Cell Analysis (SCA) has
revolutionized our understanding of the cell-type origins of differentially
expressed genes (Wang et al., 2009). These methods are essential for
dissecting gene expression patterns in tissues with heterogeneous cell

compositions (Durmaz et al., 2015).

RNA Sequencing allows for the comprehensive analysis of RNA presence
and quantity in biological samples. SCA further advances this
understanding by enabling the analysis of gene expression at the
individual cell level, which is crucial in tissues comprising diverse cell
types (Durmaz et al., 2015; Hodzic, 2016). Isolating single cells and
analyzing their genetic material allows researchers to pinpoint specific cell

types responsible for particular gene expression changes.

Microarrays, an older yet vital method, involves hybridizing labeled RNA to
gene probes on a chip (Nature, n.d.). Despite being less precise than RNA
Sequencing, they remain integral due to their cost-effectiveness and

extensive historical data.

The advancements in these technologies have significantly enhanced our
ability to interpret complex genomic data, highlighting the intricate
relationship between gene expression and cell-type specificity. They
represent pivotal steps in the ongoing journey of genetic research, from
the early days of Mendelian genetics to the detailed, cell-specific analyses

of today.



Our journey begins with an exploration of cancer as a disease, focusing on
the cell cycle as a fundamental cellular process frequently targeted by
cancer. We will provide a detailed examination of how the cell cycle
operates under normal conditions and how its regulation is disrupted in

cancerous cells.

Following this foundational understanding, we shift our focus specifically
towards lung cancer, discussing its epidemiology, types, and genetic
underpinnings. We delve into the databases used in our research, such as
The Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA).
These resources are pivotal for our analysis, providing comprehensive

datasets on gene expression and protein localization.

We then introduce the statistical frameworks and methodologies utilized
to extract cell type information from differentially expressed genes. This
includes an explanation of marker genes and their role in identifying cell
types, as well as the application of cell type ontologies to enhance our

understanding of gene expression patterns.

Next, we detail the methodologies employed in our study, covering data
collection strategies from HPA and TCGA, and the software development
processes involved. We describe the development and functionalities of
the CellTypeGenomics Python package, emphasizing its capabilities in
analyzing gene expression data and extracting biological insights from

real-world databases.

The thesis further explores the impact of smoking on lung cancer
genomics, highlighting how smoking status influences gene expression
and the molecular landscape of lung cancer. We discuss the effects of
demographic factors such as age and gender on gene expression in lung
cancer, providing a comprehensive analysis of how these variables

interplay with genetic data.

In the methodology chapter, we outline the data processing techniques,

normalization steps, and statistical methods employed to ensure robust



and accurate analysis. This includes the use of over-representation
analysis (ORA) and various statistical tools to identify significant biological

processes and pathways associated with lung cancer.

Finally, we present the results of our study, showcasing the findings of
differential gene expression analysis and pathway enrichment. We provide
visualizations and statistical summaries that elucidate the complex
relationships between gene expression, cell types, and lung cancer. The
discussion chapter interprets these results, drawing conclusions on the
biological significance and potential implications for cancer research and

therapy.

1.1 The Challenge of Cellular Heterogeneity

In this context, a fundamental challenge in bioinformatics is unraveling
the cell-type origins of genes that are differentially expressed within
diverse cell populations. Findings suggest that even cell populations that
appear identical can demonstrate significant phenotypic diversity at a
granular level. This inherent cellular diversity, pivotal in biological
processes and cellular responses to stimuli, is highlighted in works such as
Altschuler and Wu (2010). The critical question involves distinguishing
between the functional relevance of this heterogeneity and the variability
that may be stochastic biochemical noise. This discernment is essential for
creating precise models that describe individual cell behaviors and
understanding the biological implications of gene expression variations

across different cell populations.

1.2 CellTypeGenomics — A Python Package to Classify Cell Type

Origin of Differentially Expressed Genes

We have previously written a specialization project where we developed a

Python package named CellTypeGenomics, focusing on extracting cell type



origins of differentially expressed genes from RNA Sequencing data by
utilizing a Fisher Exact Test with Benjamini-Hochberg correction (Fgleide &
Mittet, 2023). This software facilitates the attribution of gene expression
changes to specific cell types within heterogeneous samples, a task that is
both crucial and challenging in cancer research. The specialization project
employed data from a psoriasis study (Solvin et al., 2023) to validate the
functionality of the CellTypeGenomics package, demonstrating its ability to

identify cell-type-specific gene expressions.

1.3 An Introduction to Cancer

1.3.1 Understanding Cancer

Cancer is a complex disease characterized by the uncontrolled growth and
spread of cells. It can originate almost anywhere in the human body,
which comprises trillions of cells (NCI, 2021). These cells typically grow,
divide, and replace themselves in a regulated process. New cells are
created to replace older or damaged ones, maintaining the body’s health.
However, this orderly process can break down. When it does, cells can
start to grow uncontrollably, potentially forming tumors, which can be

either benign (non-cancerous) or malignant (cancerous) (NCI, 2021).

Cancerous tumors are aggressive; they can invade nearby tissues and
spread to other parts of the body, a process called metastasis, which is a
hallmark of cancer’s ability to be life-threatening (NCI, 2021). In contrast,
benign tumors do not invade other tissues and, once removed, usually do
not grow back. Despite their non-cancerous nature, benign tumors can
still pose serious health risks, depending on their size and location (NCI,
2021).

Cancer cells exhibit several key differences from normal cells. They can
grow without the usual growth signals required by normal cells and can

continue to divide indefinitely (NCI, 2021). Unlike normal cells, which



cease dividing or die when they encounter other cells (a process known as
apoptosis), cancer cells ignore these signals (NCI, 2021). They also have
the ability to invade other tissues, promote blood vessel growth
(angiogenesis), and hide from or manipulate the immune system to
support their growth (NCI, 2021).

1.3.2 The Cell Cycle

Figure 1.1 provides a detailed representation of the cell cycle, illustrating
the orchestrated series of events that enable a cell to duplicate its
contents and divide into two daughter cells. The cycle commences with
the G1 phase, where cells experience growth by synthesizing proteins and
increasing in size. At this juncture, cells also assess environmental
conditions to decide whether to proceed with division or enter a quiescent
state known as GO (Hardin & Bertoni, 2018; Skogholt, 2021).

The S phase marks the period where DNA replication occurs, with each
chromosome duplicating to ensure that subsequent daughter cells inherit
a complete genetic blueprint. The subsequent G2 phase is another period
of growth and final preparations for mitosis, where the cell assembles the
proteins and organelles necessary for chromosome segregation and cell
division (Hardin & Bertoni, 2018).

The culmination of the cycle is the M phase, comprising mitosis and
cytokinesis. During mitosis, sister chromatids, which are the replicated
chromosomes, align at the cell’s equator and are then pulled apart by the
spindle fibers to opposite poles of the cell. Cytokinesis follows, physically
dividing the cytoplasm and cell membrane to form two genetically
identical daughter cells (Hardin & Bertoni, 2018).
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Figure 1.1: The figure presents the cell cycle, delineating the four primary stages
of cell division (Wikimedia Commons, 2016). During the mitotic phase,
chromosomes condense and are sorted into two new nuclei, followed by cytoplasmic
division in cytokinesis. The interphase encompasses DNA replication in S phase,
with periods of growth in G1 and G2. The cyclical nature of these stages ensures
that each daughter cell receives a complete set of genetic instructions. Regulatory
checkpoints within this cycle are critical for preventing the aberrant cell division
characteristic of cancerous growth (Skogholt, 2021).

Regulation of the cell cycle is a critical aspect of cellular division, ensuring
that each phase progresses in an orderly and timely manner. This
regulation is mediated by a variety of checkpoints and cyclin-dependent
kinases (Cdks) (Hardin & Bertoni, 2018). Checkpoints, such as the G1-S
and G2-M transitions, monitor the integrity of the DNA and the cell’s
readiness to proceed, acting as gatekeepers that can initiate repair
mechanisms or trigger apoptosis (programmed cell death) if irreparable
damage is detected. Cdks, when bound to specific cyclin proteins, form
complexes that drive the cell from one phase to the next, with their levels
fluctuating to meet the cell’s needs at each stage (Hardin & Bertoni, 2018;
Skogholt, 2021).



1.3.3 The Cell Cycle and Cancer

The precise regulation of the cell cycle is essential for maintaining the
balance between cell proliferation and cell death, which is crucial for
normal tissue homeostasis. Disruptions in the cell cycle's checkpoints and
control mechanisms can lead to unrestricted cellular division, setting the
stage for the potential development of cancer. Such dysregulation may
result from genetic mutations that activate oncogenes or deactivate tumor
suppressor genes, disrupting the tightly regulated process of cell growth
and division (Skogholt, 2021).

Building upon this concept, the "Hallmarks of Cancer," introduced by
Hanahan and Weinberg in 2000, offer a comprehensive understanding of
the various biological capabilities that cancer cells acquire throughout their
development. These hallmarks encompass critical processes such as
sustaining proliferative signaling (e.g., mutations in the RAS oncogene
result in constant growth signals, driving uncontrolled cell division),
evading growth suppressors (e.g., loss of function in the RB1 tumor
suppressor gene removes important cell cycle control), resisting cell death
(e.g., mutations in the TP53 gene allow cancer cells to survive and
proliferate despite genetic errors), enabling replicative immortality (e.g.,
activation of telomerase maintains telomere length, allowing indefinite
replication), inducing angiogenesis (e.g., overexpression of VEGF
stimulates the growth of new blood vessels essential for tumor growth),
and activating invasion and metastasis (e.g., changes in cell adhesion
molecules and the extracellular matrix facilitate tissue invasion and spread
to distant organs) (Hanahan & Weinberg, 2000; Hanahan & Weinberg,
2011; Evan & Vousden, 2001; Weinberg, 2013). Understanding these
hallmarks provides critical insights into the mechanisms of cancer
development and progression, highlighting potential targets for
therapeutic intervention aimed at disrupting these processes and

effectively treating cancer.



The cell cycle is a fundamental process where cells grow and divide, a
process tightly regulated by various checkpoints. However, in cancer,
these regulatory mechanisms fail. Proteins such as cyclins and cyclin-
dependent kinases (CDKs), which are crucial in cell cycle progression, are
often found mutated or dysregulated in cancer cells, leading to
uncontrolled proliferation. The transition points like the G1-S transition,
crucial for DNA repair and replication, and the G2-M transition, necessary
for mitotic entry, are particularly vulnerable to such disruptions (Hartwell
& Kastan, 1994; Kastan & Bartek, 2004).

In cancer, the regulation of cyclins and CDKs is often disrupted. For
example, overexpression of cyclin D1, frequently observed in breast and
esophageal cancers, leads to unchecked cell cycle progression (Musgrove
& Sutherland, 2009). Similarly, mutations in CDKs or their inhibitors (e.g.,
pl6INK4a p21CIP1Y) can lead to loss of cell cycle control (Sherr & Roberts,
2004). The CDK4/6 inhibitors have emerged as effective therapeutic
agents in treating certain cancers by restoring control over the cell cycle
(Goel et al., 2018).

Cancer often involves mutations in genes that regulate the cell cycle, such
as oncogenes and tumor suppressor genes. Oncogenes, when mutated,
can promote uncontrolled cell proliferation. For instance, mutations in the
RAS gene can lead to continuous cell division signals (Pylayeva-Gupta et
al., 2011). On the other hand, tumor suppressor genes like TP53 and RB1,
when inactivated, fail to halt cell cycle progression in the presence of DNA

damage, leading to tumorigenesis (Levine, 1997).

1.4 Exploration of Lung Cancer Dynamics

1.4.1 Detailed Examination of Lung Cancer

Lung cancer, with approximately 2.20 million new cases reported in 2020,
is the most common cancer type worldwide among men and the second

most prevalent for both genders combined after breast cancer (WCREF,



2022). This disease is classified mainly into two types: small cell lung
cancer (SCLC) and the more common non-small cell lung cancer (NSCLC).
NSCLC accounts for the majority of cases (Minna et al., 2002). Tobacco
smoking is recognized as the primary cause of lung cancer; however, not
all smokers develop the disease, underscoring the role of genetic factors

in an individual’s risk (Minna et al., 2002).

The development of lung cancer involves complex interactions between
genetic mutations and environmental exposures. Significant genetic
changes include mutations in genes responsible for cell growth, division,
and DNA repair. These mutations may activate oncogenes or deactivate
tumor suppressor genes, leading to uncontrolled cell proliferation.
Environmental factors like tobacco smoke, alongside errors in cell division
or inherited mutations, are crucial in these processes (NCI, 2021; Minna
et al., 2002).

Moreover, advancements in bioinformatics have fundamentally
transformed cancer genomics by providing tools for the comprehensive
analysis of genetic data, essential for understanding the molecular basis of
cancer. Sequencing technologies like RNA sequencing (RNA-seq) have
been pivotal in profiling transcriptomes of cancer cells, revealing gene
expression changes during cancer development (Wang et al. 2009; Stark
et al. 2019). These advancements have facilitated tasks such as sequence
alignment, gene expression quantification, and identification of
differentially expressed genes, critical for both basic research and clinical
applications, informing strategies for disease management and therapy
(Subramanian et al. 2005; Conesa et al. 2016).

1.4.2 Milestones of Lung Cancer Research

The history of lung cancer illustrates its transformation from an
uncommon ailment a century ago to becoming the leading cause of cancer

death globally today. Initially, lung cancer was so rare that it was
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considered a reportable condition. However, its incidence began to rise
dramatically, correlating with the increased popularity of smoking
following the First World War (Spiro & Silvestri, 2005). By the late 20t
century, the number of lung cancer deaths in the United States had
surpassed the combined totals from breast, colon, and prostate cancers,
underscoring the emergence of lung cancer as a severe public health issue
(Spiro & Silvestri, 2005).

The acknowledgment of smoking as the primary catalyst for lung cancer
was significantly advanced by landmark research. In 1950, Doll and Hill
directly linked cigarette smoking to lung cancer, challenging societal
norms and spurring public health initiatives aimed at curbing smoking
rates (Doll & Hill, 1950). This research, along with the influential 1964
U.S. Surgeon General’s report, was instrumental in decreasing smoking
prevalence and, consequently, lung cancer rates in the developed world
(U.S. Public Health Service, 1964).

Despite progress in imaging, diagnosis, staging, and treatment
techniques, survival rates for lung cancer have only modestly improved
(Spiro & Silvestri, 2005). Today, lung cancer is considered the most
preventable form of respiratory disease worldwide. This historical
narrative not only sheds light on the deadly impact of tobacco but also
emphasizes the critical need for further advancements in research,
treatment, and prevention strategies to fight this devastating disease
(Spiro & Silvestri, 2005).

1.4.3 Impact of Demographics on Gene Expression in Lung

Cancer

The expression of genes in lung cancer is significantly influenced by
patient demographics such as age and gender, which in turn affect the

disease’s pathophysiology and the efficacy of therapeutic interventions.
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Understanding the extent and nature of these influences is crucial for

advancing personalized medicine in lung cancer treatment.

Research into age-related genetic changes has demonstrated significant
implications for disease progression and response to therapy. For
example, studies on mesenchymal stem cells by Wilson et al. (2010)
indicate that molecular changes associated with aging can impact cellular
functions, suggesting that similar age-related genetic changes in lung
cancer patients might affect tumor biology and the efficacy of cellular
repair mechanisms. Although this study focuses on a different cell type,
the findings are relevant to understanding the broader implications of

aging on cancer biology.

Similarly, gender-specific differences in gene expression have been
documented across various conditions, highlighting potential disparities in
disease progression and response to treatments. A study by Kolhe et al.
(2017) identified gender-specific differences in the expression of exosomal
miRNA in patients with osteoarthritis, pointing to potential similar patterns
in lung cancer that could influence disease dynamics differently in males
and females. These differences underscore the necessity for gender-
specific treatment strategies in lung cancer tailored to the unique gene

expression profiles observed in different patient groups.

The observed variability in gene expression across different demographics
highlights the importance of tailoring lung cancer treatments to individual
patient profiles. Integrating demographic factors allows oncologists and
researchers to refine their understanding of the molecular drivers of lung
cancer, thereby improving prognostic assessments and facilitating the
development of targeted therapies. Utilizing bioinformatics tools to
analyze large datasets, such as those highlighted by Harbeck et al.
(2016), enhances the capacity to understand and apply molecular and

protein markers in clinical decision-making in cancer treatment.
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1.4.4 Comparative Analysis of Tumor Versus Normal Tissue

A fundamental aspect of understanding lung cancer involves the
comparative analysis of gene expression between tumor tissues and
adjacent normal tissues. This methodology allows researchers to identify
specific genetic alterations characteristic of cancer development, including
the upregulation of oncogenes and the downregulation of tumor
suppressor genes. These genetic distinctions are crucial for the
development of targeted therapies and serve as biomarkers for early

diagnosis and monitoring of lung cancer progression (Frost, 2021).

The analysis reveals complex reorganizations of cellular processes that
drive cancer development, extending beyond simple increases or
decreases in gene activity. Such findings are pivotal for identifying
potential drug targets and enhancing the precision of therapeutic
interventions. The role of bioinformatics in this research context is
indispensable, facilitating the efficient processing and analysis of vast
genomic data produced by high-throughput sequencing technologies. By
employing differential expression analysis, bioinformatics tools can clearly
delineate the unique gene expression patterns that distinguish cancerous
tissues from non-cancerous ones, which is essential for understanding the
molecular underpinnings of cancer and developing effective prevention,

diagnostic, and treatment strategies (Frost, 2021).

Moreover, the use of high-throughput sequencing techniques, such as RNA
sequencing, is extensively applied to compare gene expression in tumor
versus normal tissues. This approach provides profound insights into the
molecular changes occurring in lung cancer. For example, the work by
Vogelstein et al. (2013) emphasizes how the comprehensive mapping of
cancer genomes can unveil critical insights into tumorigenic processes,
guiding the development of more effective therapeutic strategies.
Additionally, advancements in bioinformatics methodologies have
significantly enhanced the interpretation of these comparative genomic

studies. Such advancements allow researchers to handle the complexity
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and volume of the data involved, leading to discoveries that propel the
development of personalized medicine (Zhou et al., 2021; Bartha et al.,
2021).

1.4.5 Impact of Smoking on the Genomic Landscape of

Lung Cancer

Smoking is a primary risk factor for lung cancer and profoundly influences
the genomic landscape of the disease by modifying gene expression within
the tumor microenvironment (Mao et al., 2021; Nakayama & Yamamoto,
2023). The distinct gene expression patterns associated with smoking—
whether current, former, or never smoker—play a crucial role in the
carcinogenic process, underlining the complexity of smoking’s impact on

lung cancer development.

Research has shown that smoking induces specific mutations and causes
widespread changes in gene expression that facilitate the onset and
progression of lung cancer. These genetic alterations include the
activation of oncogenes and the inactivation of tumor suppressor genes
pivotal in the pathogenesis of cancer. For example, smoking has been
linked to the overexpression of genes involved in xenobiotic metabolism
pathways, which enhance cancer cells’ ability to detoxify harmful
chemicals in tobacco smoke. In contrast, genes that typically function in
DNA repair are often found suppressed in smokers, reducing the cells’
capability to correct mutations potentially leading to cancer (Hecht, 2003;
Pratt et al., 2011).

The biological mechanisms by which smoking affects gene expression are
multifaceted, involving direct DNA damage from carcinogens in tobacco
smoke and indirect effects such as chronic inflammation and oxidative
stress. These mechanisms collectively create a genomic environment

conducive to cancer development. Reactive oxygen species generated
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from smoking can cause oxidative damage to DNA, leading to mutations.
Moreover, smoking-induced inflammation can modify the tumor
microenvironment, promoting cellular adaptations that facilitate tumor

growth and metastasis (Reuter et al., 2010; Poirier et al., 2012).

Understanding these interactions is essential for developing targeted
interventions and preventive measures. Moreover, it has profound
implications for personalized medicine as a patient’s smoking history can
significantly influence both prognosis and the choice of treatment. Certain
therapies may be more effective for patients whose tumors display specific
smoking-related genetic profiles, necessitating a personalized approach to
treatment based on individual genomic alterations (Hecht, 2003; Pratt et
al., 2011).

1.5 The Foundation of Ontology in Bioinformatics

In the domain of bioinformatics, ontology provides a structured framework
for organizing, categorizing, and defining relationships among a vast array
of biological concepts (Schuurman & Leszczynski, 2008; Gubanova et al.,
2021). It serves as a standardized vocabulary that aids researchers in the
consistent annotation, sharing, and analysis of biological data across
studies and databases (Schuurman & Leszczynski, 2008; Gubanova et al.,
2021). Ontologies like the Gene Ontology (GO) and the Human Disease
Ontology (DO) exemplify how these frameworks contribute to a cohesive
understanding of biological processes and disease mechanisms
(Schuurman & Leszczynski, 2008; Gubanova et al., 2021).

1.5.1 Utilizing Ontology in the Context of Human Disease

Ontologies are particularly valuable in the study of human diseases, where
they enable the integration of data from disparate sources to uncover

genetic factors, identify therapeutic targets, and develop novel
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interventions (Gubanova et al., 2021; Stevens et al., 2000). For example,
ontologies facilitate the systematic annotation of genes and diseases,
supporting the integration and querying of data essential for revealing
new insights into disease pathology and potential treatments (Gubanova
et al., 2021; Stevens et al., 2000). In the context of glioblastoma
research, ontology-based gene network reconstruction has identified
crucial genes and pathways, underscoring the potential of ontologies to
illuminate disease mechanisms and inform therapeutic strategies
(Gubanova et al., 2021).

Ontologies in bioinformatics underpin the organization of biological
knowledge, enabling the systematic integration, annotation, and analysis
of complex datasets. By standardizing the description of biological entities
and their interrelations, ontologies play a pivotal role in bridging the gap
between data and knowledge, thereby advancing the fields of biology and

medicine.

1.5.2 The Guilt by Association Principle

Guilt by association (GBA) is a heuristic widely used in functional
genomics to infer gene function based on the co-expression of genes
(Wolfe et al., 2005). The principle of GBA posits that genes with similar
expression patterns are likely to be involved in the same biological
processes. This method leverages gene co-expression networks to identify
functional modules, where clusters of co-expressed genes are analyzed to
predict the functions of less characterized genes. Studies have shown that
GBA is broadly applicable across various gene ontology categories,
providing a powerful tool for annotating gene function and understanding

biological pathways (Wolfe et al., 2005).

In the context of biomarker identification, GBA can be applied to feature
selection, helping to identify relevant and independent biomarkers from

high-dimensional data sets, such as those obtained from proteomic
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profiling. By grouping together similar features and selecting the most
representative ones, GBA-based methods enhance the robustness and
reliability of biomarker discovery (Shin et al., 2008). This approach not
only aids in functional annotation but also improves the interpretability

and accuracy of high-throughput data analyses.

1.6 Databases in Bioinformatics

In bioinformatics, databases play a pivotal role. They are collections of
datasets, more conceptual than technical concepts. These databases
store, organize, and manage a vast amount of biological data, enabling

researchers to retrieve, analyze, and interpret this data efficiently.

1.6.1 Overview of the Human Protein Atlas

The Human Protein Atlas (HPA) offers an extensive map of protein
expression across various contexts including normal tissues, cancerous
tissues, and cell lines. This knowledge-based portal is notable for its
annotated protein expression data, which is analyzed using multiple
antibodies. This comprehensive database aids in identifying the primary
subcellular localizations of protein targets. As of the latest update, the
HPA encompasses expression data for over half of the human protein-
coding genes, providing invaluable insights into protein functions and

interactions (Pontén et al., 2008).

Moreover, bioinformatics platforms like GEPIA (Gene Expression Profiling
Interactive Analysis), the Cancer Genome Atlas (TCGA), and cBioPortal
provide user-friendly interfaces for complex genomic data analysis. These
platforms include visualizations of gene expression, survival analyses, and
molecular profiling, which are crucial for identifying potential biomarkers
for diagnosis, prognosis, and therapeutic targets (Bhandari et al. 2022;
Libbrecht & Noble 2015; Min et al. 2017).
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1.6.2 The Cancer Genome Atlas (TCGA): A Comprehensive

Genomic Resource

The Cancer Genome Atlas (TCGA) is a critical resource that provides a
detailed catalog of genomic variations linked to a wide array of cancer
types. Initially established to decipher the molecular basis of cancer, TCGA
aims to facilitate the discovery of new therapeutic targets and biomarkers
(The Cancer Genome Atlas Program, n.d.). By highlighting the genetic
diversity within and across cancer types, TCGA enhances our
understanding of cancer heterogeneity. This variability is evident in the
genetic and molecular profiles of different cancers and even within
subtypes of the same cancer, highlighting the complexity of oncological

pathologies.

TCGA's research has significantly advanced the identification of potential
biomarkers for early detection and treatment response by mapping
prevalent genetic variations in cancers and correlating high expression
levels of certain cell types with specific cancer types (The Cancer Genome
Atlas Program, n.d.). These insights into the genetic variations that
frequently occur in cancer underscore their importance in understanding
fundamental biological processes and developing targeted cancer

therapies.

1.6.3 Human Ensemble Cell Atlas (hECA)

The Human Ensemble Cell Atlas (hECA) is a significant bioinformatics
resource designed to provide a comprehensive, cell-centric view of human
biology through the integration of extensive single-cell transcriptomic
data. As of version 1.0, hECA compiles data from 1 093 299 cells across
38 human organs and 146 cell types, sourced from 116 published datasets
(Chen et al., 2022).

The core of hECA is its unified giant table (uGT), a specialized storage

engine capable of accommodating a vast array of attributes beyond
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transcriptomic data, thus supporting multifaceted indexing of cells. This
table allows for the flexible retrieval and analysis of cell data, enabling

researchers to perform complex queries and in-depth analyses.

Complementing the uGT is the unified hierarchical annotation framework
(uHAF), which standardizes cell type labels across different datasets to
ensure consistency and comparability. This framework is designed to be
compatible with other cell ontology systems and is open to future
upgrades, supporting a comprehensive understanding of cellular diversity
and function (Chen et al., 2022).

hECA introduces several innovative applications for cell data. One such
application is "In Data Cell Sorting," which allows researchers to select
specific cell populations using complex logic expressions, thereby
facilitating targeted data retrieval from the assembled cell atlas. Another
key feature is "Quantitative Portraiture," a system that offers muilti-
dimensional representations of genes, cell types, and organs, providing a
holistic view of biological entities. Additionally, hECA supports
"Customizable Reference Creation," enabling researchers to create tailored
references for cell type annotation tasks, thus enhancing the utility of the

cell atlas in various biomedical studies.

Overall, hECA serves as a pivotal database in bioinformatics, enabling
advanced research through its comprehensive assembly of single-cell data
and innovative tools for data analysis and retrieval. This cell-centric
approach opens new possibilities for exploring cellular mechanisms and

interactions across different tissues and conditions.

1.6.4 Gene Ontology (GO) and Reactome Databases

The Gene Ontology (GO) and Reactome databases are invaluable
resources in bioinformatics, providing comprehensive frameworks for
annotating genes and understanding their roles within biological

processes. These databases enhance the interpretation of genomic data
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by categorizing genes into hierarchical structures, facilitating the

discovery of biological insights from complex datasets.

The Gene Ontology project provides a structured and controlled
vocabulary for gene annotation across different species, encompassing
three main categories: Molecular Function (MF), Cellular Component (CC),
and Biological Process (BP). This ontology serves as a critical tool for
unifying the representation of gene and gene product attributes, enabling
consistent descriptions of gene products across databases (The Gene

Ontology Consortium, 2021).

Molecular Function (MF) encompasses the elemental activities of a gene
product at the molecular level, such as “catalytic activity” or “binding”
(Ashburner et al., 2000).

Cellular Component (CC) describes the locations relative to cellular
structures in which a gene product performs a function, such as “nucleus”

or *“membrane” (Ashburner et al., 2000).

Biological Process (BP) refers to a series of events accomplished by one or
more ordered assemblies of molecular functions, such as “signal
transduction” which involves the transmission of molecular signals from a
cell’s exterior to its interior (The Gene Ontology Consortium, 2021;
Ashburner et al., 2000).

By annotating genes with these terms, GO provides a comprehensive view
of gene functions, which is particularly useful for over-representation
analysis (ORA) in high-throughput genomic studies. ORA can reveal which
biological processes, cellular components, or molecular functions are
overrepresented among a set of differentially expressed genes, thereby
providing insights into the underlying biological phenomena (Pomyen et
al., 2015).

Reactome is an open-source, curated database of pathways and reactions
in human biology. It provides detailed information about molecular

events, allowing researchers to map genes to specific biological pathways.
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Reactome’s pathway browser facilitates the visualization of complex
biological pathways and their interactions, supporting the understanding

of gene functions within broader biological contexts (Jassal et al., 2020).

The integration of gene expression data with Reactome pathway
annotations allows for a deeper exploration of the functional implications
of observed gene expression changes. For example, mapping differentially
expressed genes to Reactome pathways can identify specific pathways
that are upregulated or downregulated in a disease state, highlighting

potential targets for therapeutic intervention (Jassal et al., 2020).

The integration of GO and Reactome annotations into genomic analyses
enhances the interpretative power of bioinformatics studies. In the context
of lung cancer research, using these databases allows for a detailed
exploration of the biological processes and pathways involved in
tumorigenesis and cancer progression. For instance, mapping lung cancer-
related differentially expressed genes to GO terms and Reactome
pathways can identify critical processes such as cell cycle regulation,
apoptosis, and signal transduction that are disrupted in cancer cells
(Ashburner et al., 2000; Jassal et al., 2020).

1.6.5 Ensembl: A Comprehensive Genomic Resource

Ensembl is one of the most comprehensive genomic information systems
available, integrating genome sequences, variation data, and functional
annotations using ontologies. This integration provides a valuable platform
for gene expression analysis, facilitating studies on genetic variants and
their implications in various diseases, including cancer (Yates et al.,
2020).

Ensembl supports a wide range of genomic data, including gene
annotations, comparative genomics, regulatory elements, and sequence
variations (Yates et al., 2020). This comprehensive resource allows

researchers to access a wealth of genomic data, enhancing the study of
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gene functions and interactions. Ensembl’s integration with other genomic
resources and its robust annotation capabilities make it a cornerstone in
the field of genomics. While Ensembl itself does not directly link genes to
specific cell types, it supports resources that do, such as
CellTypeGenomics. This capability is particularly vital in cancer research,
where understanding the specific contributions of different cell types to
tumor biology is essential. Ensembl’s ability to integrate gene expression
data with other genomic data types enables a more holistic and
comprehensive analysis, crucial for deciphering the intricate relationships

within genomic data.

1.7 Statistical Analyses in Bioinformatics

Statistical analyses are crucial in bioinformatics. They enable researchers
to discern patterns, make predictions, and draw conclusions from vast
amounts of biological data. These analyses ensure that the findings are

scientifically valid and reproducible.

1.7.1 Over-Representation Analysis

Over-Representation Analysis (ORA) is a statistical method widely used in
genomic studies to determine if a predefined set of genes (such as those
belonging to specific pathways, functions, or diseases) is represented
more than expected within a larger set of genes under study (Yu, 2022).
This method is particularly useful in the context of high-throughput
experiments, like microarray or RNA Sequencing, where researchers aim
to identify biological processes or pathways significantly associated with a

specific condition or disease.

The central hypothesis in ORA is that genes involved in a particular
biological function or process are not randomly distributed but are often

functionally related. For instance, in a gene expression study comparing
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diseased vs. healthy states, if a specific pathway is significantly altered or
implicated in the disease, genes associated with that pathway should be
over-represented among the differentially expressed genes (Pomyen et
al., 2015).

To perform ORA, a list of genes of interest (e.g., differentially expressed
genes) is compared against a background list (usually the entire genome
or a larger set of genes from which the gene list was derived). Statistical
methods, such as the hypergeometric test or Fisher’s exact test (Fisher,
1922), are employed to calculate the probability that the number of genes
from the list of interest falling into a specific category (like a pathway) is
higher than expected by chance (Pomyen et al., 2015). The p-values
obtained from these tests are adjusted for multiple testing, often using
methods like the Benjamini-Hochberg procedure, to control the false

discovery rate (Benjamini & Hochberg, 1995; Pomyen et al., 2015).

ORA allows researchers to move beyond the analysis of individual genes

to understand the broader biological implications of their data. It helps in
identifying key pathways or processes potentially disrupted or altered in

the condition under study, thereby providing insights into disease

mechanisms or potential therapeutic targets.

While ORA is a powerful tool, it comes with certain limitations. It assumes
that genes act independently, which is not always the case in complex
biological systems (Pomyen et al., 2015). Additionally, the results of ORA
can be influenced by the size of the gene set categories and the choice of
background list. Researchers must carefully select their gene lists and

categories to avoid biases.

Visualization tools like Venn diagrams and confusion matrices clarify the
interpretations of ORA, with the Venn diagram illustrating gene set
overlaps and the confusion matrix showing true and false positives and
negatives. Examples of a Venn diagram and confusion matrix are given in

Figure 1.2 and Figure 1.3.
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True Negative

Figure 1.2: Example illustration of a Venn diagram for statistical analysis, with all possible solution
spaces marked (Marzell, 2019).

Predicted
Negative (N) Positive (P)
. +
Negative . False Positives (FP)
_ True Negatives (TN) Type | error
Actual
Positive False Negatives (FN) -
+ Type Il error True Positives (TP)

Figure 1.3: Example illustration of a confusion matrix with all possible solutions spaces marked
(Gupta, 2023).
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The odds ratio is a statistical measure that quantifies the strength of
association between a specific condition (such as the presence of a
disease) and a particular gene or set of genes being studied (Szumilas,
2010). It compares the odds of a gene being over-represented in a list of
interest (like differentially expressed genes in diseased tissue) to the odds
of its representation in a background or reference list (such as the entire
genome or a control tissue). An odds ratio greater than one implies that
the gene or genes are more likely to be associated with the condition
under study than not. An odds ratio of less than one suggests a negative
association, whereas an odds ratio of exactly one indicates no association.
This measure is particularly insightful when determining if the presence of
certain genes is non-randomly associated with the condition being

investigated in the bioinformatics study.

1.7.2 Advanced Statistical Techniques for Genomic Data

Analysis

Genomic data analysis has dramatically evolved with the introduction of
high-throughput biological techniques, such as gene expression
microarray and high-throughput sequencing. These advancements allow
for the simultaneous measurement of thousands of biomolecules,
necessitating sophisticated statistical methods for data analysis and

interpretation (Pomyen et al., 2015).

In the realm of ‘big data’ genomics, multiple hypotheses testing is
standard practice. This leads to challenges such as the Familywise Error
Rate (FWER), and the probability of making one or more type I errors
(false positives) across multiple tests. The Bonferroni correction, a
straightforward method to control FWER, involves adjusting the
significance level by the number of hypotheses being tested (Watkins,
2023).
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In genomic studies, Fisher’s Exact Test serves as a cornerstone for
analyzing categorical data when sample sizes are small. This test hinges
on the hypergeometric distribution to determine the exact probability of
observing a specific combination of outcomes (Hoffman, 2015). To
illustrate the situation, we consider a population of size N that has ci1
objects with A and cz with not-A (4). Then we draw a sample of r1 objects
and find a with A. This is visualized in Table 1.1. The equation for Fisher’s
Exact Test is given in Equation 1.1 (Hoffman, 2015). It is particularly
useful when evaluating the significance of associations within 2x2
contingency tables (confusion matrices), such as the presence or absence

of a particular gene variant in disease vs. healthy states.

Table 1.1: Overview of the various groups in the hypergeometric population of size N. The
population has c; objects with A and c; with not-A (4). The scenario is drawing a sample of ry
objects and finding a with A (Hoffman, 2015).

A A Total
In sample a b ri
Not in sample C d r2

C1 C2 N

(cl)(cz) cq! < C,! el ealralpal
. I c! I'd! H H H .
P(choosing a number of As) = a(N)b —ac N!b'd‘ = 1\1I! az!b!lcl dz!

T r1!r2!

(1.1)

Where (Z) denotes the binomial coefficient, quantifying the number of

ways of picking k unordered outcomes from n possibilities. (f) are the
1

number of possible samples, (';1) is the number of ways of choosing A in a

sample of size c;, (C;) is the number of ways of choosing 4 in a sample

size N-c1=cCz. Since these events are independent, there are (ill) (22) ways

of choosing @ number of As and b number of 4s, given by the chain law in

probability. The exclamation mark here means factorial. For example,
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consider a scenario where we're examining a gene’s association with a
disease. Fisher’s Exact Test allows us to calculate precisely whether the
observed number of disease cases with the gene variant is higher than
what we would expect by chance, considering the total number of cases
and controls, and the overall frequency of the variant. This precision is
crucial when the dataset is too small to rely on approximations provided
by other tests like chi-square, ensuring that the conclusions drawn are as

accurate as possible (Hoffman, 2015).

When dealing with larger tables or multiple groups, Fisher’s Exact Test can
be adapted, although the calculations become more complex. In these
instances, specialized software or online tools can assist in computing the
probabilities and making sense of the data. The test’s reliance on the
hypergeometric distribution also means that each selection affects
subsequent selections, a crucial consideration when sampling without
replacement — a common feature in biological data where the population
size is not infinitely large (Hoffman, 2015). The application of Fisher’s
Exact Test in genomic data analysis is emblematic of the field’s reliance on
precise, robust statistical tools to draw meaningful conclusions from
complex biological data. Its use is essential in the face of large-scale data

analyses, where traditional methods may fall short.

However, as the number of tests increases, the focus often shifts from
ensuring all hypotheses are true to a more practical criterion: the False
Discovery Rate (FDR). FDR is the expected proportion of false discoveries
among the rejected hypotheses, a concept important in genomics with its

typically large number of tests (Watkins, 2023).

To control FDR, the Benjamini-Hochberg procedure is widely used. This
procedure involves ranking the p-values, setting a threshold, and rejecting
hypotheses up to the point where the p-value is less than or equal to the
threshold set by the FDR level (Watkins, 2023). Benjamini-Hochberg

correction reduces type I errors by adjusting p-values for multiple
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comparisons, ensuring more reliable results in large-scale genomic

studies.

Genomics has dramatically evolved with the introduction of high-
throughput biological techniques such as gene expression microarrays and
high-throughput sequencing. These advancements allow for the
simultaneous measurement of thousands of biomolecules, necessitating
sophisticated statistical methods for data analysis and interpretation
(Pomyen et al. 2015).

Furthermore, the development of computational tools for data analysis
has been essential for advancing our understanding of gene expression
patterns and their biological implications. Machine learning and
computational methods enhance the precision of genomic research and its

applications in oncology (Bhandari et al. 2022).

1.7.3 Comprehensive Gene Expression Analysis with the

limma Package

The limma package, short for Linear Models for Microarray Data, is a
cornerstone in the field of bioinformatics, widely used for gene expression
analysis across both microarray and RNA sequencing technologies. Initially
developed to address the challenges of high-dimensional genomic
datasets, limma has evolved into a robust statistical framework capable of
addressing the complexities associated with modern genomic research
(Ritchie et al., 2015).

At its core, limma utilizes linear modeling techniques, allowing for the
assessment of differential gene expression across various experimental
conditions. This approach is especially beneficial for multifaceted
experiments involving multiple factors or covariates. The ImFit function
exemplifies this, fitting a linear model to each gene, which effectively
delineates differential expression across diverse groups defined by clinical

or phenotypic traits (Smyth, 2004).
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Subsequent to model fitting, the eBayes function calculates empirical
Bayes statistics, crucial for enhancing the reliability of differential
expression results by stabilizing variance estimates across genes. This
process is particularly vital in genomic studies where sample sizes are
typically small, thus requiring robust statistical methods to bolster the
confidence in the findings (Smyth, 2004).

The voom function is integral in transforming count data from RNA
sequencing into log-counts per million, effectively adjusting for the
inherent mean-variance relationship in count data. This transformation is
critical for preparing the data for subsequent analysis using linear models

that are more statistically appropriate (Law et al., 2014).

For hypothesis testing, imma offers the makeContrasts and contrasts.fit
functions. These functions facilitate the construction of contrast matrices
that align with specific experimental hypotheses, enabling comparisons
such as between tumor and normal tissues or among different patient
subgroups. The topTable function then identifies the most statistically
significant genes, prioritizing them based on their evidence of differential

expression (Ritchie et al., 2015).

A practical application of /imma can be seen in lung cancer research,
where it is used to explore complex genomic interactions, identifying
pivotal genes that may influence disease progression, response to

therapy, or disease onset.

1.8 Methods for Gene Classification

The classification of genes based on their expression in various cell types
is a fundamental aspect of genomics, crucial for deciphering complex
biological processes and disease mechanisms. Understanding the
expression patterns of genes across different cell types enables
researchers to uncover the roles of these genes in health and disease,

identify potential biomarkers, and develop targeted therapies. This
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chapter explores significant methodologies for gene classification, focusing
on the Human Protein Atlas (HPA) approach, cellular deconvolution
techniques, and the theoretical foundations and applications of cell type-
specific marker genes. The integration of these methodologies provides a
comprehensive framework for understanding cellular diversity and

function in both healthy and diseased states.

1.8.1 The Human Protein Atlas Gene Classification Approach

The HPA conducted a systematic classification of all protein-coding genes
according to their expression patterns across various cell types, building
upon a methodology described earlier (Karlsson et al., 2021). Specifically,
2005 genes were identified as “Cell Type-Enriched”, where the expression
of a gene, measured as adjusted transcripts per million (TPM), was found
to be at least fourfold higher in one specific cell type compared to all other
analyzed cell types. Additionally, 2893 genes were classified as “Group-
Enriched”, denoting genes that were enriched in a set of up to 10 cell
types. Moreover, there are 9062 “Cell Type-Enhanced” genes, where the
expression of such genes was at least fourfold higher in one cell type
compared to the mean expression across all other cell types (Karlsson et
al., 2021).

Interestingly, 4257 genes exhibited a low cell type specificity, showing
roughly equivalent levels across all examined cell types (Uhlén, 2015;
Karlsson et al., 2021). A mere 11% of the genes were detected in all the
cell types analyzed, reinforcing prior estimates about the count of
universal “housekeeping” genes that are indispensable in every cell
(Karlsson et al., 2021). The classification results further highlighted the
testis as having the most cell type elevated genes, aligning with previous
findings. Numerous elevated genes were also pinpointed in the eye,
especially in photoreceptor cells, bipolar cells, and horizontal cells, as well

as in the ciliated cells of the lung (Karlsson et al., 2021).
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An integral aspect of HPA’'s methodology is the fusion of multiple analysis
platforms, facilitating the validation of single-cell data via antibody-based
image profiling in tissues (Karlsson et al., 2021). This approach, using
immunohistochemistry, provides a detailed view not only at the single-cell
level but also gives insights into the exact spatial pattern, variations
between cells, and subcellular localization. The study by Karlsson et al.
provided examples of this validation, emphasizing proteins that were
specifically expressed in unique structures, including renal collecting
ducts, retinal photoreceptor cells, early spermatids, intercalated discs in
cardiomyocytes, and hepatic Kupffer cells (Pomyen et al., 2015; Karlsson
et al., 2021).

1.8.2 Cellular Deconvolution

Cellular deconvolution, a pivotal technique in bioinformatics, focuses on
estimating the proportions of various cell types in mixed tissue samples.
Its significance lies in unraveling the complexities within tissues composed
of different cell populations, like those found in tumors. Traditional gene
expression analyses often fail to capture the nuances of these mixed
tissues, leading to overlooked signals from less prevalent cell types (Avila
Cobos et al., 2018). Cellular deconvolution addresses this by imputing
both cell type abundances and their specific expression profiles, enhancing

our understanding of gene expression in mixed cell populations.

CIBERSORTx emerges as a novel method in this realm, coined as "in silico
flow cytometry." Developed by Newman et al., it leverages gene
expression data to approximate the abundances of distinct cell types
within a mixed cell population (Newman et al., 2019). What sets
CIBERSORTX apart is its capability to process bulk gene expression data
along with a signature matrix file, which outlines the expression profile for
each cell type. Users have the flexibility to employ existing signature

matrices or generate custom ones by supplying pure cell population
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expression profiles. With the advent of single-cell RNA Sequencing,
CIBERSORTX also allows for the derivation of signature matrices from such
data.

CIBERSORTX consists of two key analysis modules. The "Cell Fractions"
module measures the proportions of different cell subpopulations within
bulk tissue expression profiles. It's distinctive for its capability to
deconvolve bulk RNA Sequencing data using signature genes derived from
either single-cell transcriptomes or sorted cell populations (Newman et al.,
2019). The "Gene Expression” module, on the other hand, infers cell type-
specific expression profiles from bulk tissue transcriptomes, without the
need for physical cell sorting (Newman et al., 2019). This module
functions in two modes: "Group-Level," which generates representative
transcriptome profiles for each cell type, aiding the understanding of
context-dependent changes in expression, and "High-Resolution," aimed
at deducing sample-level expression variations across distinct cell types,
suitable for exploring variations in cell type expression without relying on

pre-defined biological groupings.

CIBERSORTX's implementation on a web platform, backed by R and PHP
(Hypertext Preprocessor), ensures accessibility and ease of use, further
enhanced by a user-friendly interface and comprehensive guides,

including step-by-step tutorials (Newman et al., 2019).

Each cell type, with its distinct gene expression profile, contributes to the
overall molecular information in bulk samples. Consequently, analyses like
differential gene expression can be affected by variations in cell type
proportions. Addressing this, cellular deconvolution algorithms have found
applications in a variety of samples, improving interpretability, and
reducing the confounding effects of cellular heterogeneity (Avila Cobos et
al., 2018).
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1.8.3 Theoretical Foundations and Applications of

Cell Type-Specific Marker Genes

Cell type-specific (CTS) genes, also known as marker genes, play a pivotal
role in the analysis of RNA transcriptional data by defining cellular identity.
These genes are typically highly expressed in one cell type but are lowly
expressed in others, which allows them to provide essential insights into
the core set of genes that characterize a particular cell type (Qiu et al.,
2021). Understanding marker genes is crucial for filling gaps in our
knowledge of cell biology and could elucidate the cellular origins of various

pathologies.

Marker genes are extensively used to annotate cell clusters, analyze the
cellular composition of bulk tissues, and estimate cell type fractions via
deconvolution techniques. They also enable the estimation of cell type-
specific expression directly from bulk tissue samples (Qiu et al., 2021).
This wide array of applications underscores the importance of marker
genes in enhancing our understanding of complex biological systems and

the intricacies of cellular function.

A common approach to identifying marker genes involves conducting
statistical tests on cell type-specific transcriptome data, typically derived
from single-cell RNA sequencing (scRNA-seq). Genes that demonstrate
significant expression differences between a specific cell type and all
others are regarded as marker genes for that cell type. However, despite
the appeal of this approach, challenges such as the high cost of single-cell
sequencing, difficulties in obtaining viable cells from certain tissues like
the human brain, and the inherent noisiness of scRNA-seq data can
complicate the direct acquisition and analysis of CTS data. Furthermore,
using scRNA-seq data from other species to infer marker genes poses
additional challenges due to potential disparities in gene expression

profiles across species.
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Qualitative Marker Genes in HPA and hECA

The Human Protein Atlas (HPA) utilizes an extensive selection of
qualitative marker genes to classify cell types. These markers include both
those from original publications and additional markers used in pathology
diagnostics, which are chosen based on their well-established specificity to
certain cell types. This selection is guided by a strong correlation between
the gene’s cluster-specific expression and expected expression patterns
(Karlsson et al., 2021). These markers are critical for accurately
annotating the vast array of cell types identified in the HPA, aiding

significantly in enhancing the precision of cell type classifications.

Similarly, the Human Ensemble Cell Atlas (hECA) employs a combinatory
approach that incorporates both canonical, knowledge-based marker
genes and data-derived differentially expressed genes (DEGs) to construct
a comprehensive marker reference. For cell types whose marker genes
were not given in the original studies, the hECA team surveyed markers
from multiple sources, including Gene Ontology, PanglaoDB, the Human
Protein Atlas, and CellMarker to replenish the marker references. In most
cases, the top 10 DEGs for each cluster in each dataset were considered,

ensuring the robustness of cell type classifications (Chen et al., 2022).

In practical applications, these marker genes are indispensable for the
precise identification and characterization of cell types within tissues,
especially in pathologies such as cancer where cellular heterogeneity is
pronounced. By providing a means to classify cells based on definitive
expression profiles, marker genes facilitate a deeper understanding of
cellular diversity and function in health and disease. Both the HPA and
hECA databases serve as crucial resources for the scientific community,
providing access to detailed gene expression profiles and cellular

localization data which are instrumental in various scientific investigations.

34



1.9 Software Development Process

The development of the CellTypeGenomics package is delineated through
a structured sequence of phases, each integral to the realization of a
robust and functional software tool. This sequence comprises requirement
analysis, design and prototyping, coding, and comprehensive testing, each

of which plays a crucial role in the software’s lifecycle.

The process begins with an extensive requirement analysis phase, during
which detailed consultations with bioinformatics experts are conducted.
This interaction is essential to capture the precise needs and identify
potential deficiencies within existing software tools. Such engagements
are fundamental in establishing the functional requirements of the
CellTypeGenomics package, ensuring its utility and relevance to the target

user base.

Subsequent to requirement analysis is the design and prototyping phase.
In this stage, initial models of the software are constructed and are
subject to iterative refinements based on user feedback. This iterative
design process is indicative of agile development methodologies, which
prioritize flexibility and user feedback over rigid planning and development
schedules (Patton, 2014). Agile practices are particularly adept at
accommodating changes in user requirements and emerging technologies,

thereby enhancing the adaptability and longevity of the software.

The coding phase is executed using Python, a programming language
well-regarded for its extensive library support and readability—attributes
that are particularly advantageous in the domain of bioinformatics (Van
Rossum & Drake, 2009). The choice of Python is strategic, facilitating the
integration of complex data structures and algorithms while maintaining

clarity and ease of maintenance.

The culmination of the development process is marked by a
comprehensive testing phase. This phase employs a combination of unit

and integration testing to ensure the software’s reliability and accuracy
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(Myers et al., 2011). Unit tests evaluate the functionality of individual
software components, whereas integration tests assess the cohesive
operation of these components within the full software system. Such
rigorous testing is essential to ascertain that the software adheres to the
specified requirements and performs effectively under varied operational

scenarios.

Through these structured phases, the development of the
CellTypeGenomics package is meticulously orchestrated to meet the
specified design and functional criteria. This approach not only ensures
compliance with initial specifications but also imbues the software with the
necessary flexibility to adapt to future advancements in the field of

bioinformatics.

1.10 Research Questions

Investigating the molecular landscape of lung cancer requires a detailed
examination of gene expressions and their interactions with cellular and
environmental factors. Utilizing comprehensive genomic data from The
Cancer Genome Atlas (TCGA), this study employs the CellTypeGenomics
tool, which leverages data from The Human Protein Atlas (HPA) to
enhance its analyses and conducts gene ontology analysis to address
several pivotal research questions aimed at elucidating the complex

dynamics within cancer cells.

The primary focus of this research is to identify genes that are
differentially expressed between tumor and normal lung tissues,
specifically determining which genes are upregulated or downregulated in
tumors compared to normal tissues. This inquiry is essential for
understanding the cellular context of these gene expression changes and
gaining insights into their roles in lung cancer. The CellTypeGenomics tool
uses data from HPA to identify cell types based on Ensembl gene

identifiers and associates these cell types with differential gene
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expressions observed in TCGA data, thereby enhancing our understanding
of the cellular dynamics contributing to tumor development and

progression.

The broader biological implications of these differentially expressed genes
are further explored through Reactome pathway analysis. By mapping
these genes onto specific biological pathways, the research seeks to
delineate the functional pathways that are altered in lung cancer. These
comprehensive analyses provide a deep view of gene functions, their

interactions, and the biochemical pathways disrupted in the disease.

Furthermore, the study leverages TCGA data to perform gene ontology
(GO) analysis, which categorizes differentially expressed genes into
biological processes (BP), cellular components (CC), and molecular
functions (MF). The results of the GO Biological Processes are visualized
using Directed Acyclic Graphs (DAGs), providing a structured view of the
biological processes involved and their hierarchical relationships. This
visualization is crucial for interpreting the complex interactions and
expression levels of genes across different samples and conditions,

offering insights into the molecular landscape of lung cancer.

Additionally, this thesis examines how smoking status modifies gene
expression profiles in lung cancer and identifies the key molecular
pathways predominantly affected by these changes. By analyzing the
differential gene expression linked to smoking, the research will shed light
on the molecular mechanisms altered by this significant environmental

factor.

Finally, the robustness and applicability of the CellTypeGenomics package
are critically evaluated. This evaluation aims to determine to what extent
the tool can analyze TCGA lung cancer data, using HPA data to identify
cell-type origins across various datasets and experimental conditions. This
assessment will help validate the utility of the CellTypeGenomics package

in broader genomic research applications.
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2 Materials and Methods

This chapter provides a detailed account of the methodologies and tools
utilized in this study, focusing on the application and development of the
CellTypeGenomics Python package. The primary aim is to explore the cell-
type origins of differentially expressed genes in lung cancer, leveraging
the capabilities of this package to interpret and analyze complex genomic
data. Two primary data sources, the Human Protein Atlas (HPA) and The
Cancer Genome Atlas (TCGA), are employed in this research. Each serves
a distinct purpose within the research framework. HPA data provides
detailed annotations and normalized expression levels of genes across
various tissues and cell types, crucial for associating specific genes with
their corresponding cell types. Conversely, TCGA data, serving primarily
as a test data source, offers extensive gene expression profiles from lung
cancer samples. Additionally, marker genes from the Human Ensemble

Cell Atlas (hECA) are integrated to enhance the analysis.

The chapter begins with an overview of data acquisition methods for HPA,
TCGA, and hECA, followed by detailed processes for data preparation and
integration. Subsequently, it outlines the statistical methodologies
employed, including differential expression analysis and pathway analysis,
and describes the visualization techniques used to represent the data. The
development and application of the CellTypeGenomics package are then
discussed, along with the quality control and validation measures

implemented to ensure the robustness and reliability of the findings.
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2.1 Data Sources

This section outlines the acquisition of data from the Human Protein Atlas
(HPA) and The Cancer Genome Atlas (TCGA), which are central to the
analyses performed in this study. Additionally, it includes the integration
of marker genes from the Human Ensemble Cell Atlas (hECA) to enhance

the analysis.

2.1.1 Human Protein Atlas (HPA) Data Acquisition

The Human Protein Atlas dataset was sourced from its official website,
specifically from the downloadable data section. The dataset, labeled
"proteinatlas.tsv.zip," is part of Human Protein Atlas version 23.0 (Human
Protein Atlas, 2023). This dataset includes extensive gene annotations
covering gene synonyms, Ensembl gene IDs, descriptions, and detailed
RNA and protein expression data across various tissues and cell types. The
comprehensive nature of the HPA dataset, with its detailed data on gene
expression across different cell types, is invaluable for associating specific

genes with particular cell types, which is crucial for this study.

2.1.2 The Cancer Genome Atlas (TCGA) Data Acquisition

For this project, comprehensive genomic data was acquired from The
Cancer Genome Atlas (TCGA), a resource aggregating genomic
information across various cancer types. Data retrieval was facilitated
through the Genomic Data Commons (GDC) Data Portal, enabling access
to harmonized cancer datasets tailored to lung cancer research (The
Cancer Genome Atlas Program, 2024). The downloaded files contained
lung cancer tissue data from adenomas, adenocarcinomas and squamous

cell neoplasms.
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The specific datasets procured included bulk RNA sequencing data and
associated clinical metadata critical for identifying gene expression
patterns in cancerous tissues of the lung. The selection criteria applied in
the GDC Data Portal for downloading the data were specified to ensure

reproducibility and to cater to the specific requirements of our research:

- Access Level: Open, ensuring all retrieved data is publicly
accessible.

- Primary Site: Bronchus and lung, focusing our analysis specifically
on lung-related cancers.

- Data Category: Transcriptome Profiling, selected to provide a
comprehensive view of gene expression within the samples.

- Data Type: Gene Expression Quantification, which provides precise
measurement of gene expression levels.

- Experimental Strategy: RNA-Seq, a method chosen for its high
throughput and accuracy in quantifying transcripts (Wang et al.,
2009).

A total of 2001 files were downloaded, comprising approximately 8.48 GB
of data, reflecting a robust dataset focused on lung cancer. These files are
in TSV format, facilitating easy integration and analysis within
bioinformatics tools. This approach ensures that our data selection is
tailored to maximize the relevance of our findings on lung cancer

genomics.

2.1.3 Marker Genes from HPA and hECA

Marker genes, which are indicative of specific cellular or tissue states,
played a pivotal role in our analysis. These genes were identified from
both the Human Protein Atlas (HPA) and the Human Ensemble Cell Atlas
(hECA) datasets. From HPA, our selection focused on genes that
demonstrated a high tissue-specific expression. We specifically employed

a four-fold numerical threshold for marker gene selection set by HPA,
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which facilitated the identification of genes significantly expressed in
distinct tissues. This threshold was crucial for the Fisher test in the
original cell-type origin analysis, and the relevant data were directly

extracted from the TSV file mentioned in chapter 2.1.2.

For the ontology function of the CellTypeGenomics package, we utilized
the marker genes data from supplementary data S2 in the HPA study
(Karlsson et al., 2021). This subset of data was chosen due to its higher
quality and manual curation, which provided more reliable and precise

markers for various cell types.

In hECA, we extracted marker genes for the ontology function using the
UHAF marker reference.xlsx file (Chen et al., 2022), which compiled a
robust reference of marker genes, including both knowledge-based

marker genes and data-derived DEGs.

2.2 Data Preparation and Integration

This section describes the methods used to prepare and integrate data
from HPA, TCGA, and hECA. It covers normalization techniques, alignment
of Ensembl gene identifiers, and the creation of a unified analysis pipeline

to ensure consistent and reliable comparisons across samples.

2.2.1 Human Protein Atlas Data Processing

After downloading, the compressed file was extracted to access the TSV
file. The dataset from this TSV file was then structured for analysis using
Pandas, a Python library renowned for its data-handling capabilities. The
focus was on specific columns that provided insights into the normalized

expression levels of genes across different tissues and cell types, namely:
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- RNA tissue specific nTPM

- RNA single cell type specific nTPM
- RNA blood cell specific nTPM

- RNA blood lineage specific nTPM

These columns provide valuable insights into the normalized expression
levels of genes in different tissues and cell types. A Python script

aggregated Ensembl gene IDs based on their expression in various cell
types, resulting in a comprehensive JSON file that mapped different cell

types to their associated genes as per the HPA dataset.

2.2.2 The Cancer Genome Atlas Data Processing

Building on the foundational understanding of imma as detailed in
chapter 1.7.3, this section translates its theoretical capabilities into
practical applications, specifically for our analysis of The Cancer Genome
Atlas (TCGA) data. The initial step involves loading the /limma library,
crucial for employing the sophisticated linear modeling techniques that the
package is known for. Our analysis workflow commences with the loading
of gene expression data and associated metadata from CSV files. These
data sets are meticulously linked by aligning sample identifiers, facilitating

an integrated approach to subsequent analyses.

Following data importation, we undertake a meticulous preprocessing of
the metadata. This involves standardizing the sample types to ensure
consistency across the data set, a step critical for the integrity of the
analyses that follow. We focus specifically on samples identified as
Primary Tumor and Solid Tissue Normal, filtering out all irrelevant or
incomplete data entries. This selective approach not only streamlines
subsequent analyses but also enhances the accuracy of our differential

expression analysis.

42



2.2.3 Data Normalization and Filtration

Normalization of the expression data is executed utilizing the voom
function of /imma, transforming RNA-Seq count data into log2-counts per
million, a format amenable to the linear modeling techniques that limma
executes with high precision. This step is essential to adjust for the
inherent technical and biological variability in the data, ensuring that the

differential expression analyses are robust and reliable.

With normalized data, we proceed to differential expression analysis.
Employing /imma’s ImFit function, we fit linear models to each gene,
systematically exploring differences in expression between conditions such
as tumor versus normal tissues. This modeling is crucial for elucidating
the molecular underpinnings of lung cancer. To further refine our analysis,
specific contrasts are defined using the makeContrasts function, and these
are fitted to the models using contrasts.fit. These contrasts are specified
in Chapter 2.3.2. The application of the eBayes function follows,
enhancing the reliability of our results by stabilizing variance estimates—a
critical feature when dealing with the typically small sample sizes in

genomic studies.

To ensure that only biologically significant changes are highlighted, a
multi-step filtering process is applied to the topTable results from /imma.
Initially, a threshold of 1 is set for log(FPKM) (Fragments Per Kilobase of
transcript per Million mapped reads, representing average expression).
This preliminary filtering ensures that only genes with a minimum

expression level are considered for further analysis.

Following this initial filtering, a dynamic logFC threshold is applied. This
dynamic threshold is estimated based on the relationship between

average expression (AveExpr) and absolute logFC for significant genes.
This approach is particularly useful when dealing with a high number of

significant genes, as it provides a robust fit for the dynamic threshold.
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The dynamic filtering process begins by modeling the relationship between
the average expression of genes and their absolute log-fold change values
using a loess (locally estimated scatterplot smoothing) regression. This
regression establishes a threshold that varies according to the average

expression levels of the genes.

Next, the dynamic threshold is adjusted to ensure it meets a minimum
required value of abs(logFC) greater than one 1. This adjustment sets a
baseline threshold that all genes must meet or exceed, even if their
average expression levels are higher. This step ensures that the threshold
is both flexible and stringent enough to capture significant biological

changes.

Using the computed dynamic threshold function, genes are then filtered
based on whether their absolute log-fold change meets or exceeds the
threshold for their average expression levels. This filtering process
ensures that only genes showing significant changes in expression are

retained for further analysis.

Results are then saved in CSV format, ensuring that they are accessible

for further analysis.

2.2.4 Marker Genes Processing

The conversion of marker gene symbols to Ensembl Gene IDs was
performed through a systematic, multi-stage approach, leveraging various
bioinformatics tools to maximize the resolution of gene identifiers. This
process was crucial for integrating gene expression data into wider
genomic analyses, especially when correlating cell-type specific

expressions with genomic datasets.

Initially, the mygene Python package was utilized to convert gene symbols
from HPA and hECA datasets into Ensembl IDs. This tool provided a direct

query interface to genomic databases, facilitating the retrieval of gene
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IDs. Despite mygene’s utility, several genes were either not found or

there were multiple hits per gene when converting to Ensembl Gene IDs.

Due to unresolved symbols from the first iteration, the biomart package
was employed. It connected directly to the Ensembl BioMart database
offering a more robust search for Ensembl IDs through another layer of
validation. This iteration managed to obtain more unique mappings
between gene symbols and Ensembl IDs that were faulty in the first

iteration.

The remaining unresolved gene symbols were then queried using the
REST API provided by Ensembl, which is capable of accessing up-to-date
and comprehensive genetic data. This final automated step helped identify
several Ensembl IDs, although some genes remained unmatched due to
various reasons including possible obscurity or recent reclassifications in

genomic databases.

The few persistently unmatched genes were subjected to manual searches
using The Human Gene Database and other literature sources to assign
the most plausible Ensembl IDs. This step was crucial to ensure

completeness of the dataset.

2.3 Statistical Analysis and Tools

This section elaborates on the statistical methodologies and computational
tools used to analyze the integrated data from the Human Protein Atlas
(HPA) and The Cancer Genome Atlas (TCGA). Focusing on statistical
approaches, the analysis utilizes the limma package, a comprehensive
bioinformatics tool designed for the analysis of gene expression data

through linear models.

The process begins with the application of the limma package to perform
differential expression analysis. This analysis is critical as it identifies

genes that are significantly upregulated or downregulated in lung cancer
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samples compared to normal tissue samples. The ability of /imma to
handle complex experimental designs and large datasets makes it

particularly suitable for the genomic data used in this study.

Data normalization is a preliminary step before differential expression
analysis, where RNA-seq data from TCGA are transformed into log2-
counts per million using /imma's voom function. This normalization
method adjusts for library size differences and other technical variabilities,
facilitating a more accurate comparison of gene expression levels across

samples.

Following the identification of differentially expressed genes, the results
are integrated with pathway analysis to ascertain which biological
pathways are enriched with these genes. This step is performed using
bioinformatics tools that map genes to known pathways, highlighting
potential mechanisms underlying lung cancer and suggesting targets for

therapeutic intervention.

Additionally, intersection analysis is employed to group genes with similar
expression patterns, indicating shared regulatory mechanisms or
functional roles in lung cancer. This intersection analysis helps in
understanding the complex biological relationships and can guide further

experimental design or hypothesis generation.

Quality control measures are stringently applied throughout the analysis
to ensure the reliability and reproducibility of the results. These include
multiple hypothesis testing adjustments using the Benjamini-Hochberg
procedure to control the false discovery rate, ensuring that the findings

are statistically significant.

Building on these analytical foundations, the following chapters delve
deeper into the specific imma designs and contrasts used in our study,
examining both the full dataset and a critical subset defined by smoking
categories. Chapter 2.3.1 discusses the configuration of experimental

setups tailored to our research questions, illustrating how the design
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choices enhance the robustness of our statistical conclusions across both
the complete dataset and its subsets. Chapter 2.3.2 explores the specific
comparisons made between different conditions, including those based on
smoking status, to discern the subtle nuances in gene expression that are
pivotal for understanding lung cancer progression. Together, these
chapters extend our discussion on the statistical framework and
bioinformatics tools employed, providing a thorough exploration of the

methodologies that drive our research in genomic data interpretation.

2.3.1 Constructing the Design Matrix

In this section, we discuss the construction of the design matrix for both
the full dataset and the subset focusing on smoking data. The design
matrix is a crucial component in linear modeling as it defines the structure

of the covariates and their interactions used in the analysis.

Full Dataset

For the full dataset, the design matrix incorporates the interaction
between sample type and gender, along with age as a continuous

variable.

Design Matrix for Full Dataset
First, we create an interaction term between Ssample.Type and gender.

This interaction term allows us to consider the combined effect of these

two variables on gene expression.

metadata filtered$SampleSex <- with (metadata filtered,

interaction (Sample.Type, gender, sep="_"))
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Next, we construct the design matrix. The term normalized age is
included as an independent variable. It is treated as a continuous variable,
representing the normalized age of the patients. This inclusion allows us

to assess the effect of age on gene expression directly.

design <- model.matrix(~ 0 + SampleSex + normalized age,

data = metadata filtered)

In this matrix, sampleSex represents the interaction of sample type and
gender, while normalized age captures the continuous age variable. This
design matrix enables the analysis of gene expression variations
considering both the interaction of categorical variables (sample type and

gender) and the continuous effect of age.

Smoking Dataset
For the smoking dataset, we extend the interaction term to include
smoking status, thereby incorporating the effect of smoking on gene

expression.

Design Matrix for Smoking Dataset:
First, we create an interaction term that includes sample.Type, gender,
and smoking category. This comprehensive interaction term accounts for

the combined effect of these variables.

metadata filteredSinteraction term <-
with (metadata filtered, interaction (Sample.Type, gender,

smoking category))
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Next, we construct the design matrix for the smoking dataset. Similar to

the full dataset, normalized age is included as an independent variable.

design <- model.matrix(~ 0 + interaction term +

normalized age, data = metadata filtered)

In this matrix, interaction term represents the combined interaction of
sample type, gender, and smoking category, while normalized age
continues to capture the continuous age variable. This design matrix
allows for the analysis of gene expression variations considering the
interaction of categorical variables (sample type, gender, smoking status)

and the continuous effect of age.

By constructing these design matrices, we ensure that our linear models
can effectively incorporate and analyze the influence of multiple covariates

and their interactions on gene expression.

2.3.2 Regression Contrasts for both Datasets

The contrasts were defined to investigate specific biological hypotheses

and differences between sample groups in our dataset.

Full Dataset

The following contrasts were used for the full dataset.

Tumor vs. Normal: This contrast compares gene expression levels
between primary tumor samples and solid tissue normal samples. It is

formulated in the code block below.
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TumorVsNormal = (SampleSexPrimaryTumor male +
SampleSexPrimaryTumor_female)/2 -
(SampleSexSolidTissueNormal male +

SampleSexSolidTissueNormal female) /2

This approach averages the expression levels for male and female

samples in both the tumor and normal tissue groups to provide a robust
comparison.

Tissue x Sex Interaction: This contrast examines the interaction effect

between tissue type (tumor or normal) and sex (male or female). It is
expressed below.

TissueXSex = (SampleSexPrimaryTumor male -
SampleSexPrimaryTumor female) -
(SampleSexSolidTissueNormal male -

SampleSexSolidTissueNormal female)

This formulation captures the differential expression due to the interaction

between sex and tissue type.

Male vs. Female: This contrast explores differences in gene expression
between male and female samples, irrespective of tissue type. It is
formulated below.

MaleVsFemale = (SampleSexPrimaryTumor male +
SampleSexSolidTissueNormal male) /2 -
(SampleSexPrimaryTumor female +

SampleSexSolidTissueNormal female) /2
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By averaging the expression levels of male and female samples across
both tissue types, this contrast isolates the effect of sex on gene

expression.

Smoking Dataset

The following contrasts were used for the smoking dataset.

Tumor vs. Normal: This contrast compares gene expression levels
between primary tumor samples and solid tissue normal samples. It is

formulated in the code block below.

TumorVsNormal =
(interaction termPrimaryTumor.female.0 +
interaction termPrimaryTumor.male.O +
interaction termPrimaryTumor.female.l +
interaction termPrimaryTumor.male.l +
interaction termPrimaryTumor.female.2Z +

interaction termPrimaryTumor.male.2) / 6 -

(interaction termSolidTissueNormal.female.O +
interaction termSolidTissueNormal.male.0 +
interaction termSolidTissueNormal.female.l +
interaction termSolidTissueNormal.male.l +
interaction termSolidTissueNormal.female.2 +

interaction termSolidTissueNormal.male.Z2) / 6

This approach averages the expression levels for male and female
samples in both the tumor and normal tissue groups to provide a robust

comparison.
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Tissue x Sex Interaction: This contrast examines the interaction effect
between tissue type (tumor or normal) and sex (male or female). It is
expressed below.

TissueXSex = (

(interaction termPrimaryTumor.male.0 -
interaction termPrimaryTumor.female.0) +
(interaction termPrimaryTumor.male.l -
interaction termPrimaryTumor.female.l) +
(interaction termPrimaryTumor.male.2 -

interaction termPrimaryTumor.female.2)) / 3 -

((interaction termSolidTissueNormal.male.0 -
interaction termSolidTissueNormal.female.0) +
(interaction termSolidTissueNormal.male.l -
interaction termSolidTissueNormal.female.l) +
(interaction termSolidTissueNormal.male.2 -
interaction termSolidTissueNormal.female.2)) / 3

This formulation captures the differential expression due to the interaction

between sex and tissue type.

Male vs. Female: This contrast explores differences in gene expression
between male and female samples, irrespective of tissue type. It is

formulated below.

MaleVsFemale = (
interaction termPrimaryTumor.male.O +
interaction termPrimaryTumor.male.l +
interaction termPrimaryTumor.male.2 +
interaction termSolidTissueNormal.male.0 +
interaction termSolidTissueNormal.male.l +

interaction termSolidTissueNormal.male.2) / 6 -

(interaction termPrimaryTumor.female.0 +

interaction termPrimaryTumor.female.l +
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interaction termPrimaryTumor.female.2 +
interaction termSolidTissueNormal.female.O +
interaction termSolidTissueNormal.female.l +

interaction termSolidTissueNormal.female.2) / 6

By averaging the expression levels of male and female samples across
both tissue types, this contrast isolates the effect of sex on gene

expression.

Current vs. Former (Tumor): This contrast explores differences in gene
expression between current smokers and former smokers, on tumor

tissue. It is formulated below.

CurrentVsFormerTumor =

(interaction termPrimaryTumor.female.2 +

N
|

interaction termPrimaryTumor.male.2) /

(interaction termPrimaryTumor.female.l +

N

interaction termPrimaryTumor.male.l) /

By contrasting the expression levels of current smokers and former
smokers across tumor tissue, this contrast isolates the effect of not

smoking anymore on gene expression.

Current vs. Never (Tumor): This contrast explores differences in gene
expression between current smokers and never smokers, on tumor tissue.

It is formulated below.

CurrentVsNeverTumor =
(interaction termPrimaryTumor.female.2Z +

interaction termPrimaryTumor.male.2) / 2 -
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(interaction termPrimaryTumor.female.O +

interaction termPrimaryTumor.male.O) / 2,

FormerVsNeverTumor =
(interaction termPrimaryTumor.female.

interaction termPrimaryTumor.male.l)

N+ NN+

1
/
(interaction termPrimaryTumor.female.O
/

interaction termPrimaryTumor.male.O)

By contrasting the expression levels of current smokers and never
smokers across tumor tissue, this contrast isolates the effect of never

having smoked on gene expression.

Current vs. Former (Normal): This contrast explores differences in
gene expression between current smokers and former smokers, on normal

tissue. It is formulated below.

CurrentVsFormerNormal =

+

(interaction termSolidTissueNormal.female.2

N
[

interaction termSolidTissueNormal.male.2) /

+

(interaction termSolidTissueNormal.female.l

N

interaction termSolidTissueNormal.male.l) /

By contrasting the expression levels of current smokers and former
smokers across normal tissue, this contrast isolates the effect of not

smoking anymore on gene expression.
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Current vs. Never (Normal): This contrast explores differences in gene
expression between current smokers and never smokers, on normal

tissue. It is formulated below.

CurrentVsNeverNormal =

(interaction termSolidTissueNormal.female.2 +
interaction termSolidTissueNormal.male.2) / 2 -
(interaction termSolidTissueNormal.female.O +
interaction termSolidTissueNormal.male.0) / 2,
FormerVsNeverNormal =

(interaction termSolidTissueNormal.female.l +
interaction termSolidTissueNormal.male.l) / 2-
(interaction termSolidTissueNormal.female.O +
interaction termSolidTissueNormal.male.0) / 2

By contrasting the expression levels of current smokers and never
smokers across normal tissue, this contrast isolates the effect of never

having smoked on gene expression.

2.4 Development of the CellTypeGenomics Package

The development of the CellTypeGenomics package is a key component of
this thesis, designed to provide robust tools for exploring the cell-type
origins of differentially expressed genes in lung cancer by leveraging
complex genomic data. This package utilizes detailed data from the
Human Protein Atlas (HPA) to accurately map Ensembl gene identifiers to
specific cell types, enabling a huanced understanding of gene expression

patterns within various cellular contexts.
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2.4.1 Rationale for Development

The CellTypeGenomics package was developed to address the need for
specialized tools capable of utilizing HPA data for detailed cell type
identification. This functionality is crucial for studies on complex diseases
such as lung cancer and psoriasis, where understanding cellular dynamics
is key to uncovering disease mechanisms and identifying potential

therapeutic targets.

2.4.2 Core Functionality

At the heart of the CellTypeGenomics package is its capability to map
Ensembl gene identifiers to cell types using the extensive numerical data
available from HPA. This fundamental feature allows for the detailed
analysis of the cellular origins of gene expressions, which is critical for
investigating the pathogenesis of diseases. The output from this analysis
includes structured data frames that detail the associations between
genes and cell types, complete with statistical analyses such as p-values
and odds ratios. These outputs provide researchers with precise and

actionable data on gene expression patterns.

2.4.3 Additional Features

The CellTypeGenomics package includes advanced functionalities that
enhance its analytical capacity. It supports both numerical and qualitative
marker genes from the Human Protein Atlas (HPA), enhancing the
precision of cell-type specificity analysis. Additionally, the package
supports qualitative marker genes from the Human Ensemble Cell Atlas
(hECA), allowing for a broader exploration of cell types in various
datasets. The capability to analyze tissue origins further broadens the

genetic analysis, including both cell-type and tissue-specific gene
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expression patterns. These features are invaluable for studies aimed at

understanding the broader biological contexts of gene expressions.

2.4.4 Handling Data from Multiple Sources

The CellTypeGenomics package is adept at processing input lists of
Ensembl gene identifiers from diverse genomic datasets, such as The
Cancer Genome Atlas and psoriasis-specific studies. By analyzing these
lists and returning structured DataFrames that detail gene-cell type
associations, the package demonstrates its flexibility and broad
applicability in genomic research, enabling comprehensive analyses that

incorporate a wide variety of biological and medical contexts.

2.4.5 Optimization and Validation

Extensive efforts have been made to optimize the CellTypeGenomics
package for handling large genomic datasets efficiently. It has been
thoroughly tested with both synthetic benchmarks and real-world data to
ensure its accuracy and reliability, making it a dependable tool for

scientific research.

2.4.6 Documentation and Community Engagement

To aid users and foster an open-source community, comprehensive
documentation is provided alongside the CellTypeGenomics package.
Available on GitHub and PyPI, the documentation offers detailed
instructions on installation, usage, and troubleshooting, encouraging
collaboration and ongoing development by researchers worldwide (Fgleide,
2024).
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2.5 Visualization Techniques

Effective visualization is crucial in genomic research as it aids in the
interpretation and communication of complex data sets. This section
describes the visualization techniques employed in this study to represent
data obtained from the Human Protein Atlas (HPA) and The Cancer
Genome Atlas (TCGA). These techniques were integral in elucidating the
relationships between differentially expressed genes, their associated cell

types, and the biological pathways involved in lung cancer.

2.5.1 Dot Plots

Dot plots were extensively used to display the expression levels of genes
across different samples and conditions. This method was particularly
useful in showcasing the variability and distribution of gene expression
within and between groups defined by clinical or biological parameters. In
this study, dot plots helped visualize the expression profiles of genes
identified as differentially expressed in lung cancer tissues compared to
normal tissues, as well as differences influenced by factors such as patient
sex and smoking status. The dot plots were created using the Matplotlib
library in Python, which provides extensive customization options and

robust functionality for creating detailed and informative plots.

2.5.2 Upset Plots

Upset plots, a modern alternative to Venn diagrams, were utilized to
visualize the intersections of multiple gene sets and their relationships.
These plots were particularly useful in this study for analyzing the overlap
between differentially expressed genes across various conditions and
subsets within the data. By using the UpSetPlot library in Python, the
study was able to generate clear and concise representations of complex

relationships in the data, highlighting significant overlaps and unique
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expressions within subgroups. This visualization technique was crucial for

identifying patterns that are not immediately obvious from raw data alone.

2.5.3 Directed Acyclic Graphs (DAGS)

Directed Acyclic Graphs (DAGs) were employed to visualize the
hierarchical relationships among Gene Ontology (GO) terms associated
with differentially expressed genes. These graphs played a crucial role in
elucidating the biological pathways and processes impacted by changes in
gene expression observed in lung cancer. By mapping the enriched GO
terms in a DAG, the study highlighted the interconnected nature of

biological processes and identified key pathways.

First, the Gene Ontology OBO (Open Biological and Biomedical Ontologies)
file was streamed from an online URL and temporarily saved to disk using
the requests library. This step facilitated the local processing of the GO
terms. Next, GO terms with associated p-values and parent-child
relationships were loaded from JSON files. These terms were then sorted
by p-value to prioritize the most significant terms for analysis. To organize
the GO terms, they were structured into hierarchical layers based on their
parent-child relationships. Each term was assigned to a specific layer,
which represents its level in the hierarchy (top significant, second most
significant, etc.). For visual distinction in the DAG plots, each layer of GO
terms was assigned a distinct color inspired by the rainbow spectrum. This
coloring scheme helps to easily differentiate between various levels of the
hierarchy. To ensure the accuracy of the hierarchical relationships, GO
terms were loaded again from the OBO file. This step verified that the
terms and their relationships were correctly represented. Finally, DAG
plots were created using the GOATOOLS library. Each term in the DAG
was color-coded according to its assigned layer. The resulting plots were
saved as PNG files for further analysis and presentation. The creation of

DAGs involved the API of gProfiler, which was used to fetch information
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from the Gene Ontology (GO) database, providing comprehensive
functional annotations for the gene lists, essential for over-representation
analysis (ORA) (Kolberg et al., 2023). The use of these tools made it
possible to organize and display the relationships among GO terms in a

structured and visually appealing manner.

2.6 Quality Control and Validation

In the rigorous framework of this study, ensuring the reliability and
accuracy of data analysis is paramount. Quality control and validation
measures are extensively implemented across all stages of the research to

maintain data integrity and validate the analytical methods used.

Quality control begins at the data acquisition stage, where initial checks
on data completeness and correctness are performed. For the RNA-seq
data from The Cancer Genome Atlas and expression data from the Human
Protein Atlas, quality control measures include the verification of gene
identifiers and inspection of expression level distributions to identify

potential outliers or anomalies.

The normalization of data, a crucial step in quality control, is performed
using the voom function of the /imma package, which normalizes RNA-seq
data to log2-counts per million to adjust for library size variations and
other technical biases. This step is critical for ensuring that subsequent
analyses such as differential expression are based on reliable and

comparable data.

Validation of the analytical results involves several steps to confirm the
biological plausibility and accuracy of the findings. Differential expression
results, particularly those related to sex differences in gene expression,
are subjected to rigorous validation. For example, the differential
expression of genes between male and female samples in the full dataset

and in the smoking dataset underwent additional verification. This
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included matching the differentially expressed genes against established
lists of identifiers known to differentiate male from female gene
expressions. Genes such as DDX3Y and ZFY, known for their roles in sex
determination and differentiation, showed expected patterns of higher
expression in male samples. Conversely, genes like XIST, involved in X-
chromosome inactivation, exhibited underexpression in male samples,

aligning with known biological functions.

Furthermore, validation checks included the statistical analysis of log fold
changes and adjusted p-values to confirm significant differences in gene
expression. This comprehensive validation not only confirms the
robustness of the dataset and the analytical procedures employed but also
enhances the foundational knowledge necessary for further investigations

into the genetic determinants of sex-based differences in lung cancer.

Additionally, the validation process extends to other sex-specific genes,
particularly those located on the Y chromosome in male samples. The
expression patterns observed were consistent with their chromosomal
location and biological roles, providing further evidence of the accuracy of

the differential expression analysis.

These quality control and validation processes ensure that the results
presented are not only statistically significant but also robust and
biologically meaningful. This rigorous approach enhances the credibility of
the findings and supports the integrity of the research methodology
employed in this study.
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3 Results

This chapter presents a comprehensive analysis of cell-type specific gene
expression in lung cancer, emphasizing the differential effects of
demographic variables and smoking status. Utilizing the CellTypeGenomics
package, the study meticulously examines data from The Human Protein
Atlas (HPA) and The Cancer Genome Atlas (TCGA), enabling detailed
exploration of how differentially expressed genes (DEGSs) correlate with

specific cell types and demographic factors.

The structure of the analysis is desighed to directly address specific
research questions posed in Chapter 1.10, detailing the relationship
between gene expression and factors such as age, gender, smoking

status, and cell type origins.

Chapter 3.1 introduces the CellTypeGenomics package and outlines its
fundamental role in mapping Ensembl gene identifiers to cell types using
data from the Human Protein Atlas. This chapter directly addresses the
second research question regarding the cell type origins of DEGs,
demonstrating how this package can link DEGs to specific cell types, which
is essential for understanding the cellular dynamics of gene expression in

lung cancer.

Chapter 3.2 presents the validation of the CellTypeGenomics package
using gene lists from psoriasis studies. This chapter focuses on confirming
the package's utility in linking gene expression to cell type data within the

context of psoriasis, showcasing the versatility of the package.

Chapter 3.3 delves into the gene expression analysis related to tumor
versus normal tissue using the full dataset from TCGA. This chapter is
pivotal in addressing the first research question about identifying DEGs in
lung cancer. It explores fundamental differences in gene expression

between tumor tissues and normal counterparts, employing statistical
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methods to identify DEGs and using precise cell-type mapping to relate
specific cell types to cancerous behavior. The findings from this chapter
contribute significantly to our understanding of the molecular alterations

associated with tumor development.

Chapter 3.4 focuses on the gene expression analysis related to smoking
using a subset of the TCGA dataset. This chapter investigates how
smoking status influences gene expression in lung cancer, addressing the
fourth research question regarding the impact of smoking on gene
expression. By analyzing DEGs associated with smoking status, this
chapter highlights key molecular pathways differentially affected by
smoking, thus contributing to a more nuanced understanding of

environmental influences on lung cancer pathology.

Chapters 3.3 and 3.4 collectively address the fifth research question about
the validation and applicability of the CellTypeGenomics package in a
cancer-specific context by utilizing the package's capabilities to attribute
DEGs to specific cell types and pathways, thus validating its efficacy in
handling large, complex genomic datasets. Throughout these chapters,
both Gene Ontology (GO) and Reactome pathway analyses are extensively
used to investigate the biological processes, cellular components, and
molecular functions associated with the DEGs. This approach addresses
the third research question by providing deeper insights into the molecular
mechanisms underpinning lung cancer and elucidating how identified
DEGs participate in critical biological pathways such as cell cycle

regulation, DNA repair, immune responses, and cellular signaling.

Each chapter employs advanced bioinformatics tools and comprehensive
genomic data to systematically address the intertwined dynamics of
genetic, demographic, and environmental factors in lung cancer. Through
this structured analysis, the study enhances understanding of lung cancer
at the molecular level, potentially informing future research, diagnosis,
and treatment strategies. This approach not only elucidates the role of

specific cell types in lung cancer but also highlights the potential influence
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of lifestyle factors such as smoking on the disease's genetic expression

landscape.

3.1 The CellTypeGenomics Package

In this chapter, we present the results obtained using the
CellTypeGenomics package, a Python tool developed for analyzing gene
expressions concerning specific cell types. The CellTypeGenomics package
was developed during the fall of 2023, as part of our specialization project
with psoriasis genes from a study by Solvin et al. from 2023, used for
validation (Fgleide & Mittet, 2023). The package was further developed in
2024 to include more data sources. Initially, we outline the rationale
behind the package’s creation, emphasizing its need and utility in the
realm of genomic research. The main results of our initial psoriasis study

are presented in chapter 3.2.

The development of the CellTypeGenomics package was catalyzed by the
necessity for an efficient method to pinpoint the cell-type origins of
differentially expressed genes, leveraging numerical data from the Human
Protein Atlas. Existing tools, while comprehensive, either lacked the
specific functionality we required or did not adequately address our
research needs. For instance, methods for automated cell type annotation
on scRNA-seq data, such as those discussed by Pasquini et al. (2020), did
not use Human Protein Atlas (HPA) for identifying cell type origins, a
crucial aspect of our analysis. Similarly, traditional RNA sequencing and
microarray techniques often fail to detect differentially expressed genes
that are identifiable through single-cell RNA sequencing, as demonstrated
by Chen et al. (2020). Furthermore, tools like the Single-cell Mapper
(scMappR), which infer cell-type specificities of differentially expressed
genes (Sokolowski et al., 2021), do not fully meet the analytical demands

of our project. These gaps in existing methodologies underscore the
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necessity for developing a specialized package tailored specifically to our

research objectives.

3.1.1 Usage of the CellTypeGenomics Package

CellTypeGenomics is an open-source Python package, designed to assist
researchers in exploring the cell-type origins of differentially expressed
genes. The first version of the CellTypeGenomics package from 2023
utilized numerical data (proteinatlas.tsv) from the Human Protein Atlas
(HPA) to generate a prioritized list of genes, potentially underscoring over-
represented genes in the dataset. This data consisted of 16 742 unique
genes, with a range of 50 to 3053 genes associated with each cell type
across the data. The average amount of genes per cell type accounted to
571.7. Building upon this, the second version of the package from 2024
incorporated qualitative marker genes from both the Human Ensemble
Cell Atlas (hECA) and HPA. As described in chapter 1.8.3, these marker
genes are based on existing literature. The marker genes from HPA
consisted of 148 unique genes, with a range of 1 to 7 genes per cell type
and an average of 2.9 genes per cell type. The hECA marker genes
consisted of 479 unique genes, a range of 1 to 34 genes per cell type and
an average of 5.0 genes per cell type. In addition, there is an option to
return tissue origins of genes using HPA data. The package is easily
accessible on the Python Package Index (PyPI; https://pypi.org/) and can
be installed with a simple command: pip install celltypegenomics. Its core
functionality, the celltypefishertest function, processes a list of Ensembl
IDs containing differentially expressed genes and returns a prioritized
DataFrame, highlighting genes that are potentially over- or under-
represented in certain cell types based on the overlap with the HPA or
hECA data.

An example of how to specify qualitative markers from hECA in the

CellTypeGenomics package is shown below in code.
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result = celltypefishertest(list of ensembl ids, alpha=0.05,

heca=True)

The default data source is numerical HPA marker genes, so then only
list of ensembl ids is needed as specified input. For qualitative
markers from HPA, set hpa marker genes=True. TO analyze tissue

origins, set tissue=True. The alpha parameter can be adjusted from its

default value of 0.05.

3.1.2 CellTypeGenomics Package Example

In this example, Genelistl is read by the CellTypeGenomics package,

returning a Pandas Dataframe. The following code allows for a list of

Ensembl codes to be converted into a list of cell types. The top five most

significant results are returned. These results are shown in Table 3.1.

with open(‘'Genelistl.txt’,

genelist content =

import CellTypeGenomics

\rl)

as f:

f.read () .splitlines{()

CellTypeGenomics.celltypefishertest (genelist content) .head(5)

Table 3.1: Dataframe returned by the CellTypeGenomics package for the example code

Countin Countin
genelist cell type Count
Odds Count not cell not in Adjusted
Cell Type P-value ratio inboth type genelist  neither p-value
Suprabasal 4.52e-70 26.86 78 122 464 19498 4.47e-68
keratinocytes
Basal keratinocytes 7.36e-38 21.50 43 157 251 19711 3.64e-36
Squamous epithelial 1.28e-23 11.34 36 164 379 19583 4.25e-22
cells
Serous glandular cells 1.44e-18 13.18 25 175 214 19748 3.58e-17
Basal respiratory cells 2.15e-18 11.38 27 173 270 19692 4.25e-17
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3.1.3 CellTypeGenomics Package Overview

Figure 3.1 presents the workflow used by the CellTypeGenomics package,
tracing the path from data acquisition at the Human Protein Atlas to the
analytical results. It visually articulates the sequence of operations,
clarifying complex methodologies for the audience. The diagram
underscores stages such as data handling, computational analysis through
Python, core functionalities of the package, and the availability of the tool
in PyPI. Each aspect serves to deepen understanding of the research

process and the execution of the study’s methods.

Data Collection and Preparation

Source: Human Protein Atlas

Tools: Python requests, zipfile
Data Structuring: Pandas

Analysis Tool - CellTypeGenomics Package

Development Language: Python

Core Function: celltypefishertest

Analysis Methods: Fisher's Exact Test,
Benjamini-Hochberg Correction

Usage Example and Results

Input: List of Ensembl IDs
Process: Running celltypefishertest
Data Structuring: Pandas

Integration and Availability

Platform: GitHub
Installation: Python Package Index (PyPI)

Figure 3.1: The streamlined process from data acquisition in Human Protein Atlas to the analytical
output of the CellTypeGenomics package is depicted, demonstrating the stages of data handling,
computational analysis, and result generation (Fgleide & Mittet, 2023).
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3.2 Validation of the CellTypeGenomics Package with Gene Lists

from Psoriasis Data

This section examines the genetic basis of psoriasis using the
CellTypeGenomics package to analyze two gene lists: Genelistl, which
includes overexpressed genes comparing lesional psoriatic skin to healthy
control skin, and Genelist2, which includes underexpressed genes
comparing lesional psoriatic skin to healthy control skin. This approach

aimed to explore the cellular dynamics of psoriasis.

The analysis revealed several key findings, visualized in Figure 3.2.
Suprabasal keratinocytes, basal keratinocytes, and squamous epithelial
cells showed strong associations with psoriasis in Genelistl. Notably,
serous glandular cells were the only cell type found in both Genelistl and
Genelist2 with significant odds ratios, underscoring their central role in the

disease's mechanisms.

Further analysis of Genelist2 revealed significant associations for cell types
such as Leydig cells, fibroblasts, astrocytes, peritubular cells, and
oligodendrocyte precursor cells. These distinct expression patterns
between Genelistl and Genelist2 underscore the complex regulatory

mechanisms involved in psoriasis.

Additionally, the same analysis was conducted using qualitative markers
from the Human Protein Atlas (HPA) and the Human Ensemble Cell Atlas
(hECA). This provided further significant results. For hECA qualitative
markers, monocytes (adjusted p-value = 0.0145, odds ratio = 37.9) and
neutrophilic granulocytes (adjusted p-value = 0.0145, odds ratio = 15.6)
showed significant associations with psoriasis. Intriguingly, Kupffer cells—
typically resident in the liver—demonstrated a notably significant
association (adjusted p-value = 0.0158, odds ratio = 202). The presence
of liver-associated Kupffer cells among significantly associated cell types
raises questions about systemic involvement and cross-talk between

distant organ systems in psoriasis, suggesting a potentially broader
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systemic component to the disease pathophysiology (Gelfand et al., 2006;
Takeshita et al., 2017).

These findings align with existing literature on the role of keratinocytes in
psoriasis. Keratinocytes are known to be central in the pathogenesis of
psoriasis, interacting with immune cells and contributing to inflammation
and abnormal skin cell proliferation. Studies highlight the role of cytokines
such as IL-17 in inducing keratinocyte proliferation and differentiation
abnormalities, which are hallmarks of psoriasis (Nestle, Kaplan, & Barker,
2009; Lowes, Suarez-Farifas, & Krueger, 2014). Moreover, recent insights
into the pathophysiology of psoriasis emphasize the intricate network of
immune cells, including monocytes and neutrophils, and their contribution
to the disease's chronic inflammatory state (Krueger & Bowcock, 2005).
This broader understanding suggests that psoriasis may not only be a
localized skin disorder but also involve multiple organ systems, potentially

mediated by systemic immune responses.

Both the current analysis and the study by Solvin et al. (2023)
acknowledge the significant role of keratinocytes in psoriasis. This analysis
shows a notable presence of differentiated keratinocytes in lesional versus
non-lesional and control skin, reinforcing the link between keratinocyte
activity and psoriatic lesions. Similarly, the Solvin study, through cellular
deconvolution, identified differentiated keratinocytes as the most
prominent cell type among the DEGs in lesional psoriatic versus healthy
control skin. This alignment underscores the pivotal role of keratinocytes

in the pathophysiology of psoriasis.

Comparing the results of these two studies is challenging due to
differences in analytical methods. The current study employs the
CellTypeGenomics package, designed specifically to analyze cell type
origins of differentially expressed genes, whereas the Solvin et al. study
(2023) used CIBERSORTX for cellular deconvolution. CIBERSORTX, known
for estimating cell proportions in mixed tissue samples, likely offers

differing sensitivity and specificity in detecting cell type fractions
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compared to the current method. These methodological differences can
influence the detection and interpretation of minor cell populations or

subtle expression changes.

Dot Plot of p-values and Odds Ratio for Psoriasis
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Figure 3.2: Dot Plot of p-values and odds ratios for psoriasis Genelistl and Genelist2.
Symbol size vary with odds ratios (OR). The color gradient from red to purple represents the
associated metric (e.g., p-value, -log10 scale), highlighting the significance of each observation.
Red dots indicate the most significant observations, with purple representing the least significant
within the set thresholds.
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3.3 Gene Expression Analysis Related to Tumor vs Normal

Tissue

In this section, we examine the genetic underpinnings of lung cancer
using data from The Cancer Genome Atlas (TCGA). The primary objective
is to analyze cell-type specific gene expressions within lung cancer tissues
to elucidate the complex interactions between genetic factors and the

disease.

The statistical overview of the dataset includes an UpSet plot to illustrate
the distribution and interconnectivity of significant gene clusters. This plot
highlights the balance between overexpressed and underexpressed genes
within the dataset, offering a clear visualization of differential gene

expression patterns.

Further, we investigate marker genes from the Human Protein Atlas (HPA)
and the Human Ensemble Cell Atlas (hECA). These marker genes are
pivotal in identifying cell types exhibiting significant differential
expression. The analysis of these genes provides insights into the cellular
composition of lung cancer tissues, enhancing our understanding of the

disease’s molecular landscape.

Reactome pathway analysis is conducted to map the significant gene
clusters to biological pathways, providing a deeper understanding of the
functional implications of the observed gene expression changes. This
analysis is complemented by Gene Ontology (GO) classifications, which
further categorize the significant genes into biological processes, cellular

components, and molecular functions.

A Directed Acyclic Graph (DAG) is employed to visualize the hierarchical
relationships and biological pathways, emphasizing the interconnectivity
and shared functions relevant to lung cancer. This graphical
representation aids in identifying key pathways and their roles in disease

progression.
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To ensure the robustness of our findings, a sanity check is performed,
validating the consistency and reliability of the differential gene expression
results. This step is crucial for confirming the accuracy of our

computational analyses.

Additionally, dot plots of differential gene expression in both tissues and
cell types are generated. These plots display the odds ratios and adjusted
p-values, highlighting the statistical significance of gene expression across

various conditions.

Overall, this section leverages advanced bioinformatics tools and
comprehensive datasets to dissect the molecular mechanisms of lung
cancer, providing a solid foundation for future research and potential

therapeutic interventions.

3.3.1 Lung Cancer Full Dataset Statistics

This section provides a comprehensive overview of the demographic and
clinical characteristics of the lung cancer dataset obtained from The
Cancer Genome Atlas (TCGA). This dataset includes detailed information
on gender distribution, age statistics, and other relevant clinical variables,

forming a robust foundation for subsequent genomic analyses.

The dataset comprises 1879 lung cancer cases, with 1165 males and 714
females. The mean age for males is 63.31 years (SD = 15.58), while for
females it is 61.69 years (SD = 18.11). The age at diagnosis for the
overall cohort shows a mean of approximately 62.7 years and a median of
approximately 65.9 years. Additionally, the metadata includes
comprehensive records for a total of 1997 samples, providing a broad
base for in-depth analysis of lung cancer. This extensive dataset supports
a detailed exploration of the molecular mechanisms underlying the

disease, considering both demographic and clinical variables.

A detailed examination of the dataset reveals that male patients tend to

be older than female patients across most cancer stages. The age
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difference were most notable in Stage IV, where males have a mean age
of 63.6 years compared to 60.1 years for females, with 29 male and 16

female patients.

These demographic statistics highlight the age distribution and gender
composition within the lung cancer cohort, which are important for
understanding the patient population and ensuring the robustness of the
genomic analyses that follow. The age and stage-specific trends
underscore the importance of considering demographic factors in lung
cancer research and may inform targeted strategies for early detection
and treatment. This analysis provides essential context for the genomic
studies conducted in subsequent sections, emphasizing the need to

account for demographic and clinical variability.

3.3.2 Differentially Expressed Genes of the Full Dataset

The UpSet plot in Figure 3.3 provides a comprehensive visualization of the
distribution and interconnectivity of significant gene clusters based on
their differential expression in the lung cancer dataset. This plot is
essential for elucidating the complex relationships among gene clusters,
particularly concerning overexpression and underexpression across

different conditions.

The UpSet plot employs color coding to distinguish between
underexpressed and overexpressed genes: red indicates underexpressed
genes, while green signifies overexpressed genes. The left histogram
categorizes gene clusters by size, displaying the number of elements in
each cluster. The accompanying bar chart at the top quantifies the
elements per cluster, emphasizing the balance between overexpressed

and underexpressed genes.

A detailed examination of the dataset reveals several key findings. In the
Tumor vs. Normal expression patterns, there are 893 genes significantly

overexpressed in tumor tissues compared to normal tissues
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(TumorVsNormal_up), with 853 of these genes being exclusively
overexpressed in tumor tissues. In contrast, TumorVsNormal_down
includes 3069 genes exclusively underexpressed in tumor tissues
compared to normal tissues from a total of 3122 significantly

underexpressed genes.

Regarding age-related expression patterns, the analysis identified 28
genes significantly overexpressed in relation to age (Age_up) and 43

genes significantly underexpressed (Age_down).

The UpSet plot further highlights the interconnectivity among different
gene clusters, illustrating shared pathways and mechanisms between
TumorVsNormal and Age-related expression patterns. This
interconnectivity offers insights into potential therapeutic targets and
emphasizes the importance of considering both tumor-specific and age-

related factors in lung cancer research.

Differentially expressed genes of the Full Dataset
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Figure 3.3: UpSet Plot of Significant Gene Interactions for Full Dataset. This plot illustrates
the distribution and interconnectivity of significant gene interactions based on differential
expression—red indicating underexpressed and green signifying overexpressed genes. The left
histogram categorizes clusters by size, while the network diagram displays their relationships. The
top bar chart quantifies the elements per cluster, highlighting the balance between overexpressed
and underexpressed genes. The plot emphasizes distinct expression patterns in tumor versus
normal tissues and age-related changes, showcasing intricate relationships among gene
interactions.
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3.3.3 Differential Expression Analysis of Marker Genes for Full

Dataset

The analysis of qualitative marker genes from the Human Protein Atlas
(HPA) and the Human Ensemble Cell Atlas (hECA) identifies significant
differential gene expressions, categorized as either over- or
underexpressed. Figure 3.4 illustrates a comparative analysis of marker
genes across various conditions, with larger symbols indicating higher
odds ratios, suggesting stronger associations between gene expression
and specific cell types. Upward-pointing triangles denote overexpressed
genes, while downward-pointing triangles indicate underexpressed genes.

A gradient bar reflects statistical significance.

The study spans age-related changes, tissue-specific expressions
influenced by sex, and comparisons between tumor and normal tissues.
Notably, Alveolar cells type II consistently show underexpression in the
TissueXSex condition for both hECA and HPA. This cell type also exhibits
significant underexpression in the TumorVsNormal condition for hECA,
highlighting their sensitivity to various biological influences, including sex-
specific factors and tissue-specific changes. This contrasts with findings by
Chaudhary et al. (2023), where alveolar type II cells, upon KRASG12D
activation, show enhanced plasticity and tumor-initiating capabilities,
suggesting a differential expression profile under oncogenic stress

compared to non-cancerous conditions.

Bronchial epithelium basal cells display highly significant p-values in tumor
versus normal tissue comparisons, suggesting their important role in
tumor biology and potential as markers for cancer progression. These cells
are overexpressed in TumorVsNormal, TissueXSex, and Age conditions for
HPA.

Alveolar cells type I are significantly underexpressed in the TissueXSex
and TumorVsNormal conditions for hECA, pointing to crucial regulatory
mechanisms affecting their expression. Macrophages and endothelial cells

show significant underexpression in TumorVsNormal conditions for HPA
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and hECA respectively, indicating their roles in tumor immune evasion and

the vascular changes associated with tumor growth.

This comprehensive analysis underscores the complex nature of gene
regulation across various biological contexts and lays a strong foundation
for future research aimed at uncovering the underlying mechanisms.
Integrating these findings with additional omics data such as proteomics
and metabolomics will enhance our understanding of the regulatory

networks involved.
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Figure 3.4: Dot Plot for full dataset displaying differential expression of qualitative
marker genes in cell types from the Human Protein Atlas (HPA) and Human Ensemble
Cell Atlas (hECA). Symbol sizes indicate odds ratios (ORs), with direction denoting
overexpression (upward triangles) and underexpression (downward triangles). The color gradient
bar shows the statistical significance (-log10 p-value).
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3.3.4 Reactome Pathway Analysis for Full Dataset

A comprehensive analysis using the Reactome Pathway database was
conducted on the full dataset to identify significant pathways associated
with differentially expressed genes in lung cancer. This analysis focused
particularly on variations resulting from tumor versus normal tissue
comparisons and differences influenced by age and sex. Figure 3.5
presents a detailed comparative analysis, visually demonstrating how

these conditions affect gene expression.

The analysis revealed overexpressed pathways in tumor conditions
associated with the cell cycle that are highly significant, underlining their
crucial role in the progression of lung cancer. The genes involved in these
pathways have potential as biomarkers for detecting and monitoring the

disease.

Underexpressed age-related changes were also notable, particularly for
the terms DNA Damage/Telomere Stress Induced Senescence, DNA
methylation and RNA Polymerase I Promoter Opening. These findings
suggest a potential dysregulation in the cellular aging processes that could
influence tumorigenesis in lung tissue. The underexpression of genes
associated with DNA damage response and telomere maintenance could
imply a reduced capacity for senescence induction, potentially allowing
cells with damaged DNA to proliferate instead of entering a senescent
state. This pathway is crucial as it acts as a natural barrier against cancer
by stopping the proliferation of cells that have acquired hazardous levels
of DNA damage (Blackburn, 2005). Alterations in DNA methylation
patterns are a hallmark of aging and cancer, affecting gene expression
without altering the DNA sequence. The observed underexpression related
to DNA methylation processes might indicate an aberrant epigenetic
landscape, which is critical in the regulation of gene expression and
maintenance of genomic stability (Jones & Baylin, 2007).

RNA Polymerase I Promoter Opening is essential for the transcription of

ribosomal RNA (rRNA), fundamental for ribosome biogenesis and overall
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protein synthesis. Underexpression in this pathway might suggest a
compromised capacity for cellular protein synthesis, impacting cell growth
and proliferation, critical aspects of cancer development and progression.
Grummt (2003) highlights the complex regulation of RNA Polymerase I,
underscoring its pivotal role in cellular growth mechanisms, which could

be disrupted in cancerous tissues (Grummt, 2003).

The pathways Formation of the cornified envelope and Keratinization were
significantly overexpressed in age, sex-related comparisons and tissue-sex
comparisons. The formation of the cornified envelope involves the creation
of a protective barrier in the outer layer of the skin and other tissues.
Dysregulation in differentiation processes like cornification can indicate
broader epithelial changes relevant to cancer biology, including lung
cancer (Carregaro et al., 2013). Keratinization, the process by which
keratin proteins form protective layers in epithelial cells, can be a marker
of epithelial cell dysregulation, a characteristic of many carcinomas,

including lung cancer (Heryanto & Imoto, 2023).

Pathways such as Surfactant Metabolism, Diseases Associated with
Surfactant Metabolism and Defective CSF2RA causes SMDP4 were
significantly underexpressed for tissue-sex comparisons. Surfactant
Metabolism is crucial for the proper functioning of lung tissues (Lopez-
Rodriguez et al., 2016). It is a complex mixture of lipids and proteins that
lines the alveolar epithelium. At the air-liquid interface, the surfactant
lowers surface tension, avoiding alveolar collapse and reducing the work
of breathing (Lopez-Rodriguez et al., 2016). Surfactant deficiency can
result in diseases such as pulmonary alveolar proteinosis (Lopez-
Rodriguez et al., 2016). CSF2RA is a gene that encodes a critical protein
involved in immune and inflammatory responses. Defects in the CSF2RA
gene can cause Pulmonary Surfactant Metabolism Dysfunction 4 (SMDP4),
also known as congenital pulmonary alveolar proteinosis (Whitsett et al.,
2015). This is a rare lung disorder due to impaired surfactant homeostasis

characterized by alveoli filling with floccular material (Whitsett et al.,
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2015). The connection between defects in CSF2RA and lung cancer is

unknown.
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Figure 3.5: Dot Plot of Reactome Pathways for Full Dataset. Displays the top 5 significant
pathways for various conditions. Symbol sizes indicate odds ratios (ORs), with upward triangles for
overexpression and downward triangles for underexpression. The color gradient bar represents the
statistical significance (-log10 p-value).
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3.3.5 Biological Processes (BP) from Gene Ontology (GO)

An enrichment analysis of Gene Ontology (GO) Biological Processes (BP)
was undertaken to investigate the broader biological implications of
differentially expressed genes identified in the study. Figure 3.6 visually
maps these associations across various conditions including age, sex, and

tumor presence.

The analysis underscored several key biological processes exhibiting
significant expression patterns. Notably, mitotic processes such as the
Mitotic Cell Cycle and Mitotic Nuclear Division were markedly
overexpressed in comparisons between tumor and normal tissues. These
processes demonstrated exceptionally significant adjusted p-values and
high odds ratios, suggesting a pronounced role in tumor biology (Long et
al., 2019).

Processes like Cell Migration, Cell Motility, and Locomotion were
significantly underexpressed in comparisons between tumor and normal
tissues. In the context of lung cancer, it has been observed in mice that
intrinsic Interleukin (IL)-15 in cancer cells promotes cell motility and
migration, but exogenous IL-15 inhibits these processes (Hu et al., 2024).
Overexpression of Regulator of Chromosome Condensation 2 (RCC2) has
also been linked to enhanced cell motility in lung adenocarcinoma (Pang et
al., 2017). However, the specific underexpression of these processes in
lung cancer requires further investigation. It's important to note that the
underexpression of these processes could potentially impact the
metastatic capabilities of the cancer cells, as these processes are crucial
for tumor progression and spread (Hu et al., 2024; Pang et al., 2017).
Further research in this area could provide valuable insights into the

development and progression of lung cancer.

For a more comprehensive understanding, Appendix A.6 presents a
detailed table listing enriched biological processes. This appendix includes
significant findings such as the overexpression of the Immunoglobulin

Mediated Immune Response and B Cell Mediated Immunity in tumor
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versus normal comparisons, highlighting these processes as potential
targets for immune-based therapies. Additionally, Vasculature
Development was notably underexpressed in tumor versus normal tissue
comparisons, which might signify compromised vascular processes within
tumor environments, suggesting its potential as a biomarker for cancer

progression (Yang et al., 2021).

Additionally, the study identified significant overexpression of
developmental processes including Epidermis Development and
Intermediate Filament Organization in both tissue-sex and age categories.
This repeated overexpression emphasizes their critical roles in
physiological adaptations related to aging and sex-specific biological
differences, highlighting significant regulatory interactions (Sharma et al.,
2019).

Terms related to the packaging of DNA, such as Nucleosome Assembly,
Nucleosome Organization and Protein Localization to Chromatin were
shown to be significantly underexpressed associated with aging. These
alterations in chromatin structure and function can disrupt the normal
regulation of gene expression, contributing to cancer development.
Histone modifications, which play a pivotal role in nucleosome assembly
and chromatin dynamics, are particularly implicated in this process.
Changes in these modifications can affect DNA replication, repair, and
overall genomic stability, which are critical factors in cancer biology
(Zhang et al., 2023; Prado & Maya, 2017). Furthermore, the aging
process itself influences these epigenetic modifications, potentially
increasing the vulnerability to cancer as these regulatory mechanisms
become less effective. The decoupling of DNA synthesis from nucleosome
assembly, a phenomenon more frequently observed in aging cells,
contributes to genomic instability—a key feature in cancer progression
(Prado & Maya, 2017).

Terms related to keratinization and skin, such as Keratinization,

Keratinocyte Differentiation and Epidermis development were shown to be
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significantly overexpressed associated with aging. These processes are
essential for the maintenance of skin integrity and are intricately linked to
the pathophysiological changes observed in Lung Squamous Cell
Carcinoma (LUSC). For instance, keratinization is a key histopathological
feature of LUSC, where epithelial cells produce keratin as a protective
response to external harmful substances. This response is particularly
critical in lung tissues exposed to carcinogens like tobacco smoke, which is
a common risk factor for LUSC (Heryanto & Imoto, 2023). Research also
indicates that proteins like Receptor-Interacting Protein Kinase 4 (RIPK4),
which are involved in keratinocyte differentiation, play significant roles in
the carcinogenesis process, particularly in Squamous Cell Carcinomas
(SCCs), including those of the lung. RIPK4 is implicated in various
signaling pathways that regulate epidermal homeostasis and
differentiation, and mutations in this protein have been associated with
different forms of SCC (Xu et al., 2020).
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Dot Plot of p-values and odds ratio for GO:Biological Processes
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Figure 3.6: Dot Plot of GO Biological Processes for Full Dataset. This plot organizes Gene
Ontology (GO) Biological Processes along the y-axis, each linked to specific biological conditions
such as age, sex, and tumor presence. Vertical stacks of symbols illustrate the involvement within
each condition, with the size of each symbol indicating the odds ratio, reflecting the strength of
association. The color gradient from purple to red represents the adjusted p-values (-log10),

highlighting the statistical significance of gene involvement in each condition.
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To explore the relationships between the overexpressed and
underexpressed biological processes across multiple contrasts, Directed
Acyclic Graphs (DAGs) were constructed. A DAG is a graphical tool that
illustrates the hierarchical relationships between different biological
processes identified through Gene Ontology (GO) analysis. While DAGs
were generated for various contrasts, Figure 3.7 shows a representative
DAG for the overexpressed TumorVsNormal contrast. This DAG provides a
structured visualization of how the dysregulated processes in tumor
samples, compared to normal tissue, are interconnected within a network
of biological processes. Each node in the DAG represents a GO term, with
arrows indicating parent-child relationships that move from more specific
to more general terms. Key details of the nodes include the GO Term ID,
level (L), depth (D), and descendant count (d).

The DAG contains three main branches. The left branch contains nodes
related to organization within the cell and more specifically nuclear
division. The middle branch is the shortest, only containing the cell cycle
and more specifically the mitotic cell cycle. The right branch also deals
with the cell cycle, but rather with the cell cycle process and the mitotic
cell cycle process. The DAG demonstrates that many significant GO
Biological Process terms are related, forming a network of interconnected
processes. An example of the connectivity within the DAG can be seen
with the term Cell Cycle Process (G0:0022402), which connects to the
more specific processes Mitotic Cell Cycle Process (GO:1903047) and
Mitotic Nuclear Division (G0O:140014). This indicates a functional
progression from broad to specific cell cycle processes, underscoring the

interrelatedness of these biological processes.
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Figure 3.7: Directed Acyclic Graph (DAG) illustrating the top four most significant
Biological Process Gene Ontology (GO:Biological Process) results for the overexpressed
TumorVsNormal contrast. The arrows in the DAG point from child to parent, denoting a
progression from more specific to more general terms. This visualization highlights the hierarchical
relationships and biological pathways involved, emphasizing the interconnectivity and shared
biological functions relevant to the overexpressed TumorVsNormal contrast. The yellow node is the
most significant result, the light blue second most significant, the orange third most significant and
the light green fourth most significant. The light red nodes represent remaining nodes in the DAG
that are found to be significant GO:Biological Process results for the overexpressed TumorVsNormal
contrast, but are not among the top four most significant. The white nodes are GO:BP results that
are not found to be significant for the overexpressed TumorVsNormal contrast, but are part of the
hierarchical structure of the DAG. Each of the nodes contain a unique GO ID, level (L) indicating
the minimum path from the top root, depth (D) indicating the maximum path from the top root
term and descendant count (d) indicating the total number of GO terms below the given node from
the GO hierarchy structure (not shown in this DAG, but a part of the underlying Open Biological
and Biomedical Ontologies file) (Klopfenstein et al., 2018). The letters A, B and C at the second
most top nodes represent aliases for depth-01 GO terms, used to provide the general location in
the GO DAG of any GO term. They stand for cellular process, biological regulation and metabolic
process, respectively (Klopfenstein et al., 2018).
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3.3.6 Cellular Components (CC) from Gene Ontology (GO)

The Gene Ontology (GO) Cellular Components (CC) enrichment analysis
was conducted to assess the broader biological implications of
differentially expressed genes within this study. Figure 3.8 visually
illustrates these associations across varying conditions such as age, sex-

specific tissues, and the presence of tumors.

The analysis demonstrated significant differences in the expression of
cellular components when comparing tumor tissues to normal tissues.
Notably, components such as the immunoglobulin complex, extracellular
region, extracellular space, extracellular exosome, and extracellular
vesicle were markedly overexpressed in tumors. The immunoglobulin
complex, which exhibited the highest adjusted p-value and an odds ratio
of 103, was identified as particularly significant, indicating its crucial role

in tumor biology and its potential as a therapeutic target.

In contrast, components including the cell periphery, plasma membrane,
cell surface, extracellular region, and collagen-containing extracellular
matrix were found to be underexpressed in tumors compared to normal
tissues. These components showed lower odds ratios, suggesting a
diminished presence in tumor tissues, which may provide insights into the
structural and functional alterations occurring within the tumor

microenvironment.

In the category of sex-specific tissues, components such as the cornified
envelope, keratin filament, intermediate filament, intermediate filament
cytoskeleton, and desmosome showed significant overexpression. The
cornified envelope, in particular, displayed an exceptionally high odds ratio
of 706, underscoring its critical role in gene expression related to sex

differences.

Conversely, the underexpressed sex-specific tissue category included
components such as the lamellar body, multivesicular body, alveolar

lamellar body, multivesicular body lumen, and vesicle. Notably, the
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lamellar body and alveolar lamellar body exhibited very high odds ratios of
1308 and 1413, respectively, highlighting the distinct associations of these

components with sex-specific tissue differences.

Regarding age-related changes, overexpression was observed in
extracellular components such as the extracellular space and extracellular
region, alongside the immunoglobulin complex and circulating
immunoglobulin complex, and the cornified envelope. These components'
enhanced expression suggests their involvement in physiological

processes associated with aging.

In the age category with underexpressed components, the nucleosome,
nucleolus, CENP-A containing chromatin, CENP-A containing nucleosome,
and chromosome centromeric core domain were notably underexpressed.
These components, which displayed high odds ratios, are indicative of
their reduced presence, emphasizing their potential roles in age-related

gene expression changes.

This comprehensive analysis of cellular components and their expression
across various conditions offers valuable insights into the complex
regulatory mechanisms associated with different cellular components. By
elucidating significant associations and expression patterns, the study
contributes to a deeper understanding of the biological processes involved

in aging, sex-specific differences, and tumor biology.
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Dot Plot of p-values and odds ratio for GO:Cellular Components
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Figure 3.8: Dot Plot of GO Cellular Components for Full Dataset. This plot show Gene
Ontology (GO) Cellular Components associated with age, sex-specific tissues, and tumor presence.
Symbols represent odds ratios (OR), with size indicating the magnitude of the OR. Upward-pointing
triangles denote overexpressed genes, while downward-pointing triangles indicate underexpressed
genes. The color gradient from purple to red represents adjusted p-values (-log10), with red
marking the most statistically significant findings.
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3.3.7 Molecular Functions (MF) from Gene Ontology (GO)

The Gene Ontology (GO) Molecular Functions (MF) enrichment analysis
elucidated the roles of differentially expressed genes in lung cancer,
focusing on the impact of variables such as age, sex, and tumor presence.
Visual representation of these associations is provided in Figure 3.9, which

highlights the molecular functions implicated in various clinical scenarios.

The analysis comparing tumor tissues to normal tissues revealed
significant overexpression of molecular functions, including antigen
binding, cell adhesion molecule binding, and protein binding. The
molecular function of antigen binding, notable for having the most
significant adjusted p-value and an odds ratio of 56, is essential for
immune recognition. The prominent role of this function in tumor biology
highlights its potential as a therapeutic target, especially for strategies

aimed at enhancing the immune response in cancer immunotherapy.

Additionally, the overexpression of cell adhesion molecule binding is
significant as these molecules facilitate not only cell-cell and cell-matrix
interactions but also modulate the signaling pathways that drive tumor
progression. Understanding these functions is crucial for comprehending
the invasive capacity of cancer cells, offering potential targets to inhibit
metastasis (Harjunpaa et al., 2019; Mrozik et al., 2018; Neophytou,
2021).

Conversely, molecular functions such as signaling receptor binding and
integrin binding were found to be underexpressed in tumors, suggesting a
suppression of specific cellular signaling and regulatory mechanisms within
the tumor microenvironment. This suppression may contribute to the

pathological state of cancer cells.

We found significant overexpression in male versus female samples, such
as histone H3 demethylase activity, histone demethylase activity, protein
demethylase activity, general demethylase activity, and 2-oxoglutarate-

dependent dioxygenase activity. These findings suggest that
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demethylation processes, especially those involving histone modifications,
are more pronounced in males, potentially influencing gene expression
regulation and contributing to sex differences in disease susceptibility and

progression.

Analysis of sex-specific tissues revealed high overexpression of molecular
functions like indanol dehydrogenase activity and phenanthrene 9,10-
monooxygenase activity, indicating their significant roles in sex-related
biological processes. These findings imply that sex differences might
influence specific metabolic pathways, which are differentially activated in

lung cancer.

The study also highlighted functions associated with age-related changes.
Functions such as structural molecule activity and immunoglobulin
receptor binding were predominantly overexpressed in older individuals,
likely involved in physiological or pathological processes associated with
aging. In contrast, functions like structural constituent of chromatin and
nucleic acid binding were underexpressed, suggesting a decrease in

genomic stability and transcriptional activity with age.

The upregulation of structural constituents of skin epidermis, such as
keratins, in tumors relative to normal tissues suggests an epithelial-to-
mesenchymal transition (EMT). This process is pivotal for cancer
progression, providing epithelial cells with mesenchymal features that
enhance their motility and invasiveness, a process elaborated on by
Neophytou (2021). Interestingly, this upregulation also correlates with
age and is discernible in tissues specific to different sexes, underscoring
the complex interplay of various factors in cancer development and

progression.

Our study observed both upregulation and downregulation of structural
molecule activity, reflecting the complex nature of cancer and aging
processes. The adjusted p-values indicate that downregulation is much

more pronounced than upregulation. This duality might reflect a balance
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between protective adaptations and detrimental changes in cellular
structures, highlighting the intricate interplay of molecular functions in

lung cancer's pathology.

This enriched understanding of molecular functions through GO analysis
underscores the complex interplay of genetic expressions influenced by
demographic and pathological factors, offering pathways for targeted
therapeutic interventions and deepening the comprehension of lung

cancer biology.
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Dot Plot of p-values and odds ratio for GO:Molecular Functions
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Figure 3.9: Dot Plot of GO Molecular Functions for Full Dataset. The dot plot shows Gene
Ontology (GO) Molecular Functions associated with age, gender, sex-specific tissues, and tumor
presence. Upward-pointing triangles denote overexpressed genes, while downward-pointing
triangles indicate underexpressed genes. Larger symbols indicate higher odds ratios (OR), while a
color gradient from purple to red represents the significance of p-values (-log10 scale).
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3.3.8 Validation of Differential Gene Expression Between Male

and Female Samples in Full Dataset

In the course of ensuring the reliability of our regression results, a sanity
check was performed by verifying the differential expression of genes
between male and female samples for the full dataset. The dataset
underwent a filtration process to include only those genes previously
analyzed in the MaleVsFemale regression study. A meticulous search was
conducted to match these genes against established lists of identifiers

known to differentiate male from female gene expressions.

The differential expression of selected genes between male and female
samples was documented as follows. Genes such as DDX3Y, and ZFY,
among others, showed higher expression levels in male samples,
indicative of overexpression, whereas genes like XIST exhibited
underexpression in the same group, as can be seen in Table 3.2. The
observed expression levels for each gene are supported by a
comprehensive statistical analysis noting significant differences in
expression levels, as evidenced by log fold change values and adjusted p-
values, some of which reached levels described as infinite due to their

extremity.

The roles of these genes in sex-specific biological processes are well-
documented, thereby making them reliable markers for gender-specific
expression patterns. For instance, the gene DDX3Y, which is known for its
role in RNA helicase activity critical for RNA processing, exhibited a log
fold change of 4.90, indicating significant overexpression in males—a
finding that is consistent with its essential role in spermatogenesis
(Lardone et al., 2007). Similarly, ZFY, a gene involved in sex
determination and differentiation, also displayed significant
overexpression in male samples with a log fold change of 3.03,

underscoring the robustness of these findings (Page et al., 1987).
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Conversely, the gene XIST, a long non-coding RNA responsible for X-

chromosome inactivation, is typically underexpressed in males who

possess only one X chromosome and thereby do not undergo X-

chromosome inactivation (Brown et al., 1991). This underexpression was

quantified with a log fold change of -3.88, reinforcing the reliability of the

observed expression patterns due to its biological functions.

Further analysis extended to other sex-specific genes located on the Y
chromosome, such as RPS4Y1, USP9Y, UTY, TXLNG2P, and PRKY, all of

which were overexpressed in males. This overexpression aligns with their

chromosomal location and specific roles in male biological processes such

as protein synthesis, spermatogenesis, and epigenetic regulation (Bellott

et al., 2014).

Table 3.2: Differential expression of genes between male and female samples for the full dataset

Ensembl ID

ENSG00000129824

ENSG00000067048

ENSG00000067646

ENSG00000229807

ENSG00000114374

ENSG00000183878

ENSG00000131002

ENSGO00000099725

Gene

Name

RPS4Y1

DDX3Y

ZFY

XIST

USPOY

uTy

TXLNG2P

PRKY

Expr

Over

Over

Over

Under

Over

Over

Over

Over

logFC
6.70
4.90
3.03
-3.88
3.04
3.52
3.16

2.61

Ave

Expr

4.83

3.41

2.29

2.02

2.27

2.48

2.38

2.13

t

69.17

56.91

46.63

-43.01

39.26

39.03

37.63

35.57

adj.P.val
(-log10)

infinite
infinite
311.08
277.37
242.25
240.13
227.13

208.15

This comprehensive validation of differential expression across gender-

specific genes confirms the robustness of our dataset and the statistical

analyses employed. The high level of statistical significance associated

with these findings supports their validity and confirms the anticipated
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biological roles of these genes within the context of sex-specific genetic
research. These results not only substantiate the integrity of our analytical
procedures but also enhance the foundational knowledge necessary for
further investigations into the genetic determinants of sex-based

differences in biological traits and diseases.

3.3.9 Comprehensive Analysis of Gene Expression in Human

Protein Atlas (HPA) Tissues using Full Dataset

The Human Protein Atlas (HPA) provides an invaluable resource for
examining the distribution and expression levels of proteins across various
human tissues. Understanding these variations is critical for uncovering
the underlying biological mechanisms and their implications for health and
disease. This section presents a comprehensive analysis of gene
expression variations across different tissue types using HPA data. The
primary aim is to explore how gene expression is influenced by age, sex-
specific differences, and tumor presence, thereby identifying significant

patterns and associations, as shown in Figure 3.10.

The analysis reveals several key findings. Comparisons between tumor
and normal tissues provide critical insights into tumor biology.
Overexpressed genes in tumor tissues are prominently observed in the
esophagus, reflecting active roles in tumor development and progression.
On the other hand, significant underexpression in tissues like the lung
suggests a loss of function during tumorigenesis, contributing to the
altered cellular environment in tumors. The two most significant tissue in
the dot plot is esophagus and lung, which might be explained by a
significant overlap in the gene expression profiles of developing

esophageal and lung tissues (Morrisey & Rustgi, 2018).

Age-related gene expression changes are evident in various tissues. For
example, the esophagus exhibits significant age-related overexpression

with high odds ratios, suggesting enhanced metabolic activity or stress
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responses in this tissue as age advances. In contrast, the lymphoid tissue
and bone marrow display marked underexpression, indicative of possible
degenerative changes or reduced cellular functions typical of aging
tissues. Studies have shown a decline in the functionality and gene
expression in bone marrow with age, linked with a reduction in
hematopoietic activity and an increase in adiposity, reflecting a shift from
a regenerative to a more degenerative state in the tissue (Liu et al.,
2011). Similarly, the production of B cells in bone marrow is significantly
decreased in aged organisms, attributed to changes in the
microenvironment that unfavorably affect survival signals and cellular

dynamics necessary for effective hematopoiesis (de Mol et al., 2021).

Sex-specific differences in gene expression are also observed.
Overexpression is significant in sex-specific tissues such as the
esophagus, urinary bladder and skin. Conversely, underexpression is only
noted in the lung, highlighting differential regulatory mechanisms that

may be at play between males and females.

This analysis illuminates the complex regulatory mechanisms underlying
tissue-specific gene expression and highlights potential targets for
therapeutic intervention, particularly in age-related diseases and cancer.
Overexpressed genes in aging tissues may reflect compensatory
mechanisms or increased demand for specific functions, while
underexpressed genes could indicate declines in critical pathways or
cellular functions. Understanding sex-specific differences in gene
expression is crucial for developing gender-specific treatments and

interventions.
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Dot Plot of Tissue for Full Dataset with Over- and Underexpression
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Figure 3.10: Dot Plot of Differential Gene Expression Analysis in Tissues for Full Dataset.
This visualization illustrates the odds ratios (OR) for gene expression, where upward-pointing
triangles indicate overexpression and downward-pointing triangles represent underexpression. The
size of each symbol correlates with the odds ratio. The accompanying color gradient denotes the
adjusted p-value (-log10), highlighting the statistical significance of each gene's differential
expression across various tissues.
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3.3.10 Comprehensive Analysis of Gene Expression in

Numerical HPA Cell Types using Full Dataset

The Human Protein Atlas (HPA) is a crucial resource that allows for the
examination of the distribution and expression levels of proteins across
various human cell types. Understanding these variations is fundamental
to uncovering the underlying biological mechanisms and their implications
for health and disease. This section presents a detailed analysis of gene
expression variations across different cell types using numerical HPA data,
focusing on how gene expression is influenced by age, sex-specific

differences, and tumor presence, as shown in Figure 3.11.

The analysis reveals several key findings across different conditions.
Comparisons between tumor and normal cell types provide critical insights
into tumor biology. Overexpressed genes in tumor cell types, such as
extravillous trophoblasts, plasma cells, and suprabasal keratinocytes,
reflect active roles in tumor development and progression. These genes
may contribute to the uncontrolled proliferation, invasion, and metastasis
characteristic of cancer cells. Conversely, underexpressed genes in
adipocytes, endothelial cells, and monocytes suggest a loss of function
during tumorigenesis, highlighting the complex interplay between

oncogenic signals and the cellular environment.

Significant age-related overexpression is observed in various cell types,
such as basal keratinocytes, suprabasal keratinocytes and basal squamous
epithelial cells, with high odds ratios indicating enhanced metabolic
activity or stress responses in these cells as age advances. This suggests
that aging may lead to increased metabolic activity or stress responses in
these cells, reflecting an attempt to counteract age-related declines in
function or increased exposure to damaging agents over time. Conversely,
age-related underexpression in cell types such as plasma cells and
erythroid cells highlights potential degenerative changes or reduced

cellular functions typical of aging tissues.
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Sex-specific differences in gene expression are also observed. For
example, the overexpressed genes in basal keratinocytes, suprabasal
keratinocytes and basal squamous epithelial cells (the same cell types as

for age-related overexpression).

Alveolar cells, type 1 and type 2, are crucial for lung function by
facilitating gas exchange and producing surfactant. Analysis of numerical
HPA gene expression data reveals significant underexpression of these
cells in tissue and sex interactions and in tumor versus normal tissue
comparisons. This underexpression suggests reduced functional capacity,
likely due to degenerative changes or impaired repair mechanisms
associated with sex differences and cancer. Studies on alveolar cell
differentiation and function underscore the importance of these cells in
maintaining lung integrity and their role in surfactant production, which is
crucial for lung function and defense mechanisms. The observed
underexpression in conditions like cancer significantly impacts these roles,
leading to compromised lung function by disrupting gas exchange and

surfactant production capabilities (Zhou et al., 2021; Zhang et al., 2022).

This analysis elucidates the complex regulatory mechanisms underlying
cell type-specific gene expression and identifies potential targets for
therapeutic intervention, particularly in age-related diseases and cancer.
Overexpressed genes in aging cell types may reflect compensatory
mechanisms or increased demand for specific functions, while
underexpressed genes could indicate declines in critical pathways or
cellular functions. Understanding sex-specific differences in gene
expression is crucial for developing gender-specific treatments and

interventions.
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Dot Plot of Cell Types for Full Dataset with Over- and Underexpression
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Figure 3.11: Dot Plot of Top 20 differential gene expression analysis in cell types for the
full dataset with over- and underexpression. The triangles indicate over- or underexpression.
Triangles pointing upward represent overexpression, while those pointing downward represent
underexpression. Each triangle is color-coded according to a scale that represents -log10(p-value),
indicating the statistical significance of the over- or underexpression.
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3.4 Gene Expression Analysis Related to Smoking

In this section, we investigate the genetic influences of smoking on lung
cancer using data from The Cancer Genome Atlas (TCGA). The primary
focus is to analyze cell-type specific gene expressions within lung cancer
tissues to elucidate the complex interactions between smoking-related

genetic factors and the disease.

Mirroring the structure of chapter 3.3, we begin with a statistical overview
of the dataset, employing an UpSet plot to depict the distribution and
interconnectivity of significant gene clusters. This visualization highlights
the differential gene expression patterns influenced by smoking,
showcasing the balance between overexpressed and underexpressed

genes.

Subsequently, we explore marker genes from the Human Protein Atlas
(HPA) and Human Ensemble Cell Atlas (hECA). These marker genes are
critical in identifying cell types that exhibit significant differential
expression related to smoking. Analyzing these genes provides insights
into the cellular composition of lung cancer tissues, enhancing our

understanding of the molecular impacts of smoking.

Reactome pathway analysis is conducted to map the significant gene
clusters to biological pathways, providing a deeper understanding of the
functional implications of the observed gene expression changes due to
smoking. This analysis is complemented by Gene Ontology (GO)
classifications, which further categorize significant genes into biological

processes, cellular components, and molecular functions.

A Directed Acyclic Graph (DAG) is utilized to visualize the hierarchical
relationships and biological pathways, emphasizing the interconnectivity
and shared functions relevant to smoking-related lung cancer. This
graphical representation aids in identifying key pathways and their roles in

disease progression.
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To ensure the robustness of our findings, a sanity check is performed,
validating the consistency and reliability of the differential gene expression
results. This step is crucial for confirming the accuracy of our

computational analyses.

Additionally, we generate dot plots of differential gene expression in both
tissues and cell types. These plots display the odds ratios and adjusted p-
values, highlighting the statistical significance of gene expression across

various conditions influenced by smoking.

Finally, we look specifically at qualitative marker genes from hECA and
HPA that are shared with numerical marker genes from HPA, highlighting

marker genes that are found across multiple sources.

3.4.1 Lung Cancer Smoking Dataset Statistics

This section provides a comprehensive overview of the demographic and
clinical characteristics of the lung cancer dataset obtained from The
Cancer Genome Atlas (TCGA). This dataset includes detailed information
on gender distribution, age statistics, and other relevant clinical variables,

forming a robust foundation for subsequent genomic analyses.

The dataset comprises 442 lung cancer cases, with 290 males and 152
females. The mean age for males is 64.57 years (SD = 9.19), while for
females it is 63.97 years (SD = 9.80). The age at diagnosis for the overall
cohort shows a mean of approximately 64.37 years and a median of
approximately 65.27 years. Additionally, the metadata includes
comprehensive records for a total of 741 samples, providing a broad base
for in-depth analysis of lung cancer. This extensive dataset supports a
detailed exploration of the molecular mechanisms underlying the disease,

considering both demographic and clinical variables.

The demographic statistics is further broken down for each smoking

category in Table 3.3 showing the total number of cases, along with the
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gender distribution and the mean age of males and females for each
smoking category. It also includes the standard deviation (SD) of age for
each group. Figure 3.12 show a bar chart of age distribution for each
smoking category.

Table 3.3: This table presents the total number of cases, along with the gender distribution and

the mean age of males and females for each smoking category. It also includes the standard
deviation (SD) of age for each group.

Mean Mean
Age SD Age
Smoking Total Males Age Females SD Age
Category Cases Males Females (years) Males (years) Females
Never 126 64 62 61.97 10.64 61.31 10.31
Reformed 179 122 57 68.63 8.11 67.66 8.06
Current 137 104 33 62.23 7.84 62.43 9.66
Number of Cases by Age Group and Smoking Category
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Figure 3.12: The bar chart illustrates the number of cases categorized by age group and
smoking status. Age groups are represented on the x-axis, ranging from 'Under 30' to 'Over 90',
while the number of cases is depicted on the y-axis. The chart differentiates between three
smoking categories: Never (yellow), Reformed (orange), and Current (red).
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3.4.2 Differentially expressed genes of the Smoking Dataset

The UpSet plot in Figure 3.13 provides a comprehensive visualization of
the distribution and interconnectivity of significant gene clusters based on
their differential expression in the lung cancer dataset. This plot is
essential for elucidating the complex relationships among gene clusters,
particularly concerning overexpression and underexpression across

different conditions.

The UpSet plot employs color coding to distinguish between
underexpressed and overexpressed genes: red indicates underexpressed
genes, while green signifies overexpressed genes. The left histogram
categorizes gene clusters by size, displaying the number of elements in
each cluster. The accompanying bar chart at the top quantifies the
elements per cluster, emphasizing the balance between overexpressed

and underexpressed genes.

A detailed examination of the dataset reveals several key findings. In the
Tumor vs. Normal expression patterns, there are 671 genes significantly
overexpressed in tumor tissues compared to normal tissues
(TumorVsNormal_up), contributing significantly to the dataset's
interconnectivity. In contrast, TumorVsNormal_down includes 2161 genes

significantly underexpressed in tumor tissues compared to normal tissues.

Regarding age-related expression patterns, the analysis identified 15
genes significantly overexpressed in relation to age (Age_up) and one

gene significantly underexpressed (Age_down).

The FormerVsNever_Tumor_up condition has six significant genes and in
former smokers compared to never smokers in tumor tissues
(FormerVsNever_Tumor_down) there are 10 significantly underexpressed
genes, suggesting potential long-term effects of smoking cessation. The
CurrentVsNever_Tumor_down condition, with 19 genes significantly
underexpressed, reflects the impact of smoking on gene expression in

tumor tissues. This condition intersects with the TumorVsNormal_down
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condition, indicating shared pathways of gene underexpression in these

contexts.

147 Differentially expressed genes of the Smoking Dataset
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Figure 3.13: UpSet Plot of Significant Gene Clusters for Smoking Dataset. This plot
illustrates the distribution and interconnectivity of significant gene clusters based on differential
expression—red indicating underexpressed and green signifying overexpressed genes. The left
histogram categorizes clusters by size, while the network diagram displays their relationships. The
top bar chart quantifies the elements per cluster, highlighting the balance between overexpressed
and underexpressed genes. The plot emphasizes distinct expression patterns in tumor versus
normal tissues and age-related changes, showcasing intricate relationships among gene clusters.
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3.4.3 Differential Expression Analysis of Marker Genes for

Smoking Dataset

The differential expression analysis of qualitative marker genes from the
Human Protein Atlas (HPA) and the Human Ensembl Cell Atlas (hECA)
identifies significant variations in gene expressions, classified as either
overexpressed or underexpressed. Figure 3.14 presents a comparative

analysis of marker genes across various conditions.

The study covers age-related changes, tissue-specific expressions
influenced by sex, and comparisons between tumor and normal tissues.
Bronchial epithelium basal cells exhibit highly significant p-values in tumor
versus normal tissue comparisons, highlighting their crucial role in tumor
biology and potential as markers for cancer progression. These cells are
overexpressed in TumorVsNormal conditions for HPA, underscoring their
importance in lung cancer development and progression. Research has
shown that the bronchial epithelium's response to factors like TGF-1,
which is involved in epithelial-mesenchymal transition, further emphasizes
their dynamic role in cancerous transformations and their potential utility
as therapeutic targets in oncology (Paw et al., 2021). Similarly, fibroblasts
display significant p-values in TumorVsNormal_hECA_down and
TumorVsNormal_hECA_up conditions, indicating their involvement in both
tumor suppression and promotion. This underscores the importance of

fibroblasts in the tumor microenvironment.

Alveolar cells type 2 show significant underexpression in the
TumorVsNormal condition for hECA, underscoring their sensitivity to
tumor-related changes and their potential impact on lung cancer
progression. Among the top cell types by p-value, goblet cells
demonstrate the highest p-value in the TumorVsNormal_hECA_up
condition, suggesting substantial changes in gene expression related to
tumor presence. Endothelial cells represent the top cell type by p-value
for the TumorVsNormal_hECA_down contrast, as well as for the entire dot

plot as a whole, indicating their significant downregulation in the smoking
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dataset and highlighting their potential role in the differential expression
patterns observed between tumor and normal samples. Studies have
demonstrated that endothelial cells are crucial in the tumor
microenvironment, influencing both tumor growth and the immune
response. They regulate blood flow, control the permeability of blood
vessels, and interact with immune cells, making them central to the
dynamics of cancer progression and the response to therapy (Leone et al.,
2024). The influence of smoking on endothelial cells, particularly in how it
affects their function and viability, further highlights the complexities of
their role in cancer. Smoking has been shown to induce apoptosis in
pulmonary vascular endothelial cells, contributing to diseases such as
chronic obstructive pulmonary disease (COPD), which shares some
pathological features with lung cancer, indicating a broader impact of

smoking on endothelial dysfunction (Song et al., 2021).

Vascular endothelial cells exhibit significant changes in the
TumorVsNormal_hECA_down condition, indicating their involvement in the
vascular alterations associated with tumors. Neutrophilic granulocytes are
significant in the TumorVsNormal_hECA_down condition, pointing to their
role in the immune cell response to tumors. Basal keratinocytes and
bronchial epithelium basal cells are significant in the
TumorVsNormal_HPA_up condition, suggesting their potential as markers
for tumor progression. Pericytes, significant in the
TumorVsNormal_hECA_down condition, highlight their role in the tumor

microenvironment and vascular changes.

In terms of age-related changes, mast cells are significantly
overexpressed in the Age_hECA_up condition, indicating their role in
immune response modulation and their potential impact on aging
processes. Research shows that mast cells, which are integral to immune
and allergic responses, can influence age-related conditions like macular
degeneration by affecting inflammatory and oxidative stress pathways
(Malih et al., 2024). B cells, significant in the Age_hECA_up condition,
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emphasize their involvement in the adaptive immune response and their

potential impact on aging.

Alveolar cells type 2 consistently show underexpression in the TissueXSex
condition for both hECA and HPA, highlighting their sensitivity to various
biological influences, including sex-specific factors and tissue-specific
changes. Fibroblasts display significant p-values in multiple conditions,
underscoring their influence on cancer progression and their role in the

tumor microenvironment.
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Dot Plot of Cell Type Ontologies for Smoking Dataset
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Figure 3.14: Dot Plot for smoking dataset displaying differential expression of marker

genes in cell types from the Human Protein Atlas (HPA) and Human Ensemble Cell Atlas
(hECA). Symbol sizes indicate odds ratios (ORs), with direction denoting overexpression (upward
triangles) and underexpression (downward triangles). The color gradient bar shows the statistical

significance (-log10 p-value).
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3.4.4 Reactome Pathway Analysis using Smoking Dataset

A comprehensive analysis using the Reactome Pathway database was
conducted to identify significant pathways associated with differentially
expressed genes in lung cancer. This analysis focused particularly on
variations resulting from tumor versus normal tissue comparisons and
differences influenced by smoking status, age, and sex. Figure 3.15
presents a detailed comparative analysis, visually demonstrating how

these conditions affect gene expression.

The analysis revealed several key findings. In tumor versus normal tissue
comparisons, pathways associated with the cell cycle, including Cell Cycle
and Cell Cycle, Mitotic, are highly significant. These pathways are
predominantly overexpressed in tumor conditions, suggesting their crucial
role in the progression of lung cancer. The genes involved in these
pathways have potential as biomarkers for detecting and monitoring the
disease. Pathways related to the immune system, such as Classical
antibody-mediated complement activation and FCGR activation, also
showed significant overexpression. This suggests an active role in tumor
immunity and inflammation processes within the tumor microenvironment.
The classical antibody-mediated complement activation pathway involves
the activation of the complement system via antibodies, crucial for
immune responses. Overactivation can lead to chronic inflammation,
promoting a microenvironment conducive to tumor development and
progression. Research underscores that the complement system, through
components like C5a, can stimulate various cellular responses that
enhance tumor progression. Activation of C5a, for instance, can lead to
increased inflammation and promote tumor growth by affecting cellular
functions such as migration and metastasis formation. Additionally, the
dysregulation of this pathway is linked to adverse effects in the tumor
microenvironment, potentially contributing to carcinogenesis by modifying
cellular behavior and immune cell interactions (Netti et al., 2021; Zhang

et al., 2019). FCGRs play a role in antibody-mediated immune responses,
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influencing immune responses to cancer cells with potential roles in
immune evasion and tumor progression. CD22 mediated BCR regulation, a
pathway that regulates BCR signaling essential for B-cell function, is also
noteworthy. Dysregulated BCR signaling can support abnormal B-cell
activation and immune evasion mechanisms in lung cancer (Zhang et al.,
2023).

In age-related comparisons, the top pathways identified as overexpressed
are CD22 Mediated BCR Regulation, Regulation of Complement Cascade,
Complement Cascade, Classical Antibody-Mediated Complement
Activation, and FCGR Activation. The CD22 mediated BCR regulation
pathway is crucial for B-cell function, and its dysregulation can lead to
abnormal B-cell activation, contributing to cancer cell proliferation and
immune evasion in lung cancer. The Regulation of Complement Cascade
and Complement Cascade pathways play essential roles in immune
response, promoting inflammation and cell lysis. Abnormal complement
activity can lead to chronic inflammation, a condition linked to cancer
development and progression, including in lung cancer. Classical antibody-
mediated complement activation enhances immune defense mechanisms,
and its overactivation can contribute to chronic inflammation and immune
modulation, factors associated with lung cancer progression (Kharghan,
2017). FCGR activation modulates immune responses against tumors, and
its abnormal activation can lead to immune evasion by cancer cells and

support tumor growth.

For pathways that are significantly underexpressed in older age groups,
the top pathways identified are Scavenging of Heme from Plasma and
Binding and Uptake of Ligands by Scavenger Receptors. The Scavenging
of Heme from Plasma pathway involves the clearance of free heme from
the blood, preventing oxidative damage and maintaining iron
homeostasis. Heme metabolism is linked to oxidative stress, which can
promote cancer development (Chiang et al., 2021). Abnormal heme

scavenging might contribute to the oxidative environment that supports
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lung cancer progression. The Binding and Uptake of Ligands by Scavenger
Receptors pathway involves scavenger receptors on immune cells binding
and internalizing various ligands, including modified lipoproteins and
apoptotic cells (Zani et al., 2015). Dysregulation in scavenger receptor
pathways can affect inflammation and immune responses, potentially

promoting a tumor-supportive microenvironment in the lungs.

There are notable overlaps between pathways identified in
TumorVsNormal_up and Age_up conditions. Both conditions highlight the
significance of pathways such as CD22 mediated BCR regulation,
Regulation of Complement cascade, Complement cascade, Classical
antibody-mediated complement activation, and FCGR activation. The
CD22 mediated BCR regulation pathway is crucial for B-cell function, and
its dysregulation can lead to abnormal B-cell activation, contributing to
cancer cell proliferation and immune evasion in lung cancer. The
Regulation of Complement cascade and Complement cascade pathways
play essential roles in immune response, promoting inflammation and cell
lysis. Abnormal complement activity can lead to chronic inflammation, a
condition linked to cancer development and progression, including in lung
cancer (Dominguez et al., 2021). Classical antibody-mediated complement
activation enhances immune defense mechanisms, and its overactivation
can contribute to chronic inflammation and immune modulation, factors
associated with lung cancer progression. FCGR activation modulates
immune responses against tumors, and its abnormal activation can lead to

immune evasion by cancer cells and support tumor growth.

Sex-related comparisons revealed substantial differential expression in
pathways such as Formation of the anterior neural plate and Formation of
the posterior neural plate, indicating a sensitivity to biological variables
like sex which could impact tissue architecture and influence the dynamics
of the tumor microenvironment. The pathway HDMs demethylate histones

was significantly overexpressed in male versus female comparisons,
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suggesting sex-specific epigenetic modifications that might contribute to

lung cancer susceptibility and progression.

In comparisons involving smoking status, particularly current versus
former smokers, pathways like PPARA activates gene expression and
Regulation of lipid metabolism by PPARalpha were significantly
upregulated in current smokers. This points to ongoing inflammatory and
metabolic dysregulation due to smoking, which could exacerbate lung
cancer risk. In current versus never smokers, pathways such as
Keratinization and Formation of the cornified envelope were prominent,
suggesting changes in epithelial cell differentiation and barrier function
that may facilitate cancer development. The formation of the cornified
envelope involves the creation of a protective barrier in the outer layer of
the skin and other tissues. Dysregulation in differentiation processes like
cornification can indicate broader epithelial changes relevant to cancer
biology, including lung cancer (Carregaro et al., 2013). Keratinization, the
process by which keratin proteins form protective layers in epithelial cells,
can be a marker of epithelial cell dysregulation, a characteristic of many

carcinomas, including lung cancer (Heryanto & Imoto, 2023).
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Dot Plot of Reactome Pathways for Smoking Dataset
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Figure 3.15: Dot Plot of Reactome Pathways for Smoking Dataset. Displays the top 5 for
Age_up and TumorVsNormal_up conditions and top 2 significant pathways for the remaining
conditions. Symbol sizes indicate odds ratios (ORs), with upward triangles for overexpression and
downward triangles for underexpression. The color gradient bar represents the statistical
significance (-log10 p-value).
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3.4.5 Biological Processes (BP) from Gene Ontology (GO)

An enrichment analysis of Gene Ontology (GO) Biological Processes (BP)
was undertaken to investigate the broader biological implications of
differentially expressed genes identified in the study. Figure 3.16 visually
maps these associations across various conditions, including comparisons
between current and former smokers (Normal tissue), current and never
smokers (Tumor tissue), former and never smokers (Tumor tissue), age-

related differences, and tumor versus normal tissue comparisons.

In the comparison between current and former smokers (Normal) where
genes are overexpressed, the metabolism of insecticides, often mediated
by cytochrome P450 enzymes, was significant. These pathways can
influence lung cancer risk by affecting the body's ability to process
carcinogens found in tobacco smoke and environmental pollutants.
Research detailed in Bernauer et al. (2006) emphasizes the diversity and
functionality of cytochrome P450 enzymes in human lung tissue, which
play a crucial role in the metabolic activation of chemicals inhaled via
tobacco smoke, potentially contributing to carcinogenic effects.
Additionally, Stipp and Acco (2021) review how these enzymes, through
their interaction with proinflammatory cytokines in the tumor
microenvironment, can influence carcinogenesis and modify the efficacy
and toxicity of chemotherapy in lung cancer. Furthermore, the dibenzo-p-
dioxin catabolic process was identified. Dioxins are environmental
pollutants known to be carcinogenic, and the body's ability to break them
down can impact lung cancer risk, as these compounds can cause DNA

damage and promote carcinogenesis (Valavanidis et al., 2013).

In the comparison between current and never smokers (Tumor), where
genes are underexpressed, several processes related to sensory
perception were identified. Taste receptors, including those for bitter
taste, are expressed in the respiratory system and play roles in detecting
harmful substances and triggering protective responses. Underexpression

of these genes in tumors might reflect alterations in cell signaling
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pathways critical for recognizing and responding to carcinogenic stimuli.
This includes the detection of chemical stimuli involved in the sensory
perception of bitter taste. Studies like those by Risso et al. (2016) have
shown that variations in the TAS2R38 bitter taste receptor influence
smoking behavior, potentially due to differential sensitivity to bitter
compounds in tobacco smoke. For the comparison between former and
never smokers (Tumor) where genes are overexpressed, the cellular
response to jasmonic acid stimulus and the response to jasmonic acid
were highlighted. Although jasmonic acid is a plant hormone, the cellular
response mechanisms it triggers, such as stress and defense responses
(Rehman et al., 2023), have parallels in human biology. In the context of
lung cancer, overexpression of genes related to these pathways may
reflect an increased cellular effort to counteract the stress and damage
caused by tumor growth and therapeutic interventions. The metabolism of
daunorubicin and doxorubicin, both chemotherapy drugs used to treat
various cancers including lung cancer, was also significant. The metabolic
processes involved in handling these drugs are crucial for understanding

their therapeutic effects and side effects in lung cancer treatment.

For the comparison between tumor and normal tissues where genes are
overexpressed, the adaptive immune response was again highlighted,
underscoring its importance in targeting and destroying cancer cells. The
immunoglobulin-mediated immune response and B cell-mediated
immunity were also significant. These responses are part of the body's
defense mechanism against cancer, and therapies that utilize or enhance
immunoglobulins are being developed for cancer treatment. Additionally,
the mitotic cell cycle process, crucial for cell division, was highlighted. In
cancer, dysregulation of this process leads to uncontrolled cell
proliferation, and targeting the cell cycle is a common strategy in cancer

therapy.

116



In the comparison between tumor and normal tissues where genes are
underexpressed, several processes crucial for maintaining normal tissue
architecture and function were identified. This includes anatomical
structure development, regulation of multicellular organismal processes,
cell motility, and multicellular organismal processes. Underexpression of
genes involved in these processes in tumors suggests a disruption in
normal tissue organization, which is a hallmark of cancer, facilitating
tumor invasion and metastasis. Proper segregation of chromosomes
during cell division, critical for genomic stability, was also significant.
Errors in this process can lead to mutations and cancer progression.
Understanding these mechanisms can help in developing treatments that

target cancer cell division.

In the age-related comparison where genes are overexpressed, the
adaptive immune response is critical in targeting and destroying cancer
cells. Age-related changes in the immune system can impact the
effectiveness of this response against lung cancer. The immune response
in general, including the generation of diverse immune receptors capable
of recognizing a wide range of antigens, is essential for effective immune
surveillance. This includes processes such as the immunoglobulin-
mediated immune response and B cell-mediated immunity. Antibodies can
recognize and bind to tumor antigens, marking cancer cells for destruction

by the immune system.

The analysis also identified several biological processes that are shared
across different comparisons, underscoring common pathways potentially
involved in lung cancer pathogenesis. Specifically, adaptive immune
response, immunoglobulin-mediated immune response, and B cell-
mediated immunity were found to be significantly enriched in both the
age-related and tumor versus normal comparisons. These shared
processes highlight the pivotal role of the immune system in recognizing
and responding to tumor cells. The adaptive immune response involves T

cells that can target and destroy cancer cells, while immunoglobulin-
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mediated responses involve antibodies that mark cancer cells for
destruction. B cells, which produce these antibodies, are critical for
mounting an effective immune response against tumors. The presence of
these shared processes across different comparisons suggests that
enhancing these immune pathways could be a key strategy in developing
effective treatments for lung cancer. Understanding the commonalities in
these biological processes provides valuable insights into potential

therapeutic targets and biomarkers for lung cancer.
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Biological Processes

Dot Plot of GO:Biological Processes for Smoking Dataset
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Figure 3.16: Dot Plot of GO Biological Processes for Smoking Dataset. This plot organizes
Gene Ontology (GO) Biological Processes along the y-axis, each linked to specific biological
conditions such as smoking category, age, sex, and tumor presence. Vertical stacks of symbols
illustrate the involvement within each condition, with the size of each symbol indicating the odds
ratio, reflecting the strength of association. The color gradient from purple to red represents the
adjusted p-values (-log10), highlighting the statistical significance of gene involvement in each
condition.
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As in chapter 3.3.5, a Directed Acyclic Graph (DAG) was generated to
explore the relationships between the overexpressed biological processes
for the TumorVsNormal contrast. This is shown in Figure 3.17. This DAG
shows several similarities with the DAG constructed from the full dataset
(without specific smoking categories), emphasizing core biological
pathways involved in lung cancer. Furthermore, letters such as A, B, and
C in front of the node names are aliases for depth-01 GO terms, providing
a general location within the DAG. For example, "C" is the alias for
metabolic process, so terms descended from metabolic processes will have
a "C" associated with them, such as immune system response
(Klopfenstein et al., 2018).

The DAG reveals that many significant GO terms are related, forming a
network of interconnected processes. It consists of three branches, where
the left branch is related to the immune system process, the middle
branch is related to immune response and the right branch is related to
the cell cycle process. There are some differences between the DAGSs in
Figure 3.7 and Figure 3.17. The two branches related to the immune
system in Figure 3.17 are unique for this DAG. In Figure 3.7, the left
branch related to organization within the cell is unique for that DAG. There
are a few similarities between the DAGs. Particularly, the node Cell Cycle
Process (G0:0022402) connects to the more specific hode Mitotic Cell
Cycle Process (G0:1903047).
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Figure 3.17: Directed Acyclic Graph (DAG) illustrating the top four most significant
Biological Process Gene Ontology (GO:Biological Process) results for the overexpressed
TumorVsNormal contrast. The arrows in the DAG point from child to parent, denoting a
progression from more specific to more general terms. This visualization highlights the hierarchical
relationships and biological pathways involved, emphasizing the interconnectivity and shared
biological functions relevant to the overexpressed TumorVsNormal contrast. The yellow node is the
most significant result, the light blue second most significant, the orange third most significant and
the light green fourth most significant. The light red nodes represent remaining nodes in the DAG
that are found to be significant GO:Biological Process results for the overexpressed TumorVsNormal
contrast, but are not among the top four most significant. The white nodes are GO:BP results that
are not found to be significant for the overexpressed TumorVsNormal contrast, but are part of the
hierarchical structure of the DAG. Each of the nodes contain a unique GO ID, level (L) indicating
the minimum path from the top root, depth (D) indicating the maximum path from the top root
term and descendant count (d) indicating the total number of GO terms below the given node from
the GO hierarchy structure (not shown in this DAG, but a part of the underlying Open Biological
and Biomedical Ontologies file) (Klopfenstein et al., 2018). The letters A, B and C at the second
most top nodes represent aliases for depth-01 GO terms, used to provide the general location in
the GO DAG of any GO term. They stand for cellular process, biological regulation and metabolic
process, respectively (Klopfenstein et al., 2018). The full name of the node with GO ID GO002460
s “adaptive immune response based on somatic recombination of immune receptors built from
immunoglobulin superfamily domains”.
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3.4.6 Cellular Components (CC) from Gene Ontology (GO)

An enrichment analysis of Gene Ontology (GO) Cellular Components (CC)
was conducted to explore the broader cellular implications of differentially
expressed genes identified in the study. Figure 3.18 visually maps these
associations across various conditions, including comparisons between
current and former smokers (Normal), current and never smokers
(Tumor), age-related differences, and tumor versus normal tissue

comparisons.

In the comparison between current and former smokers (Normal) where
genes are overexpressed, the plasma membrane proton-transporting V-
type ATPase complex was highlighted. This complex plays a crucial role in
regulating the acidification of intracellular compartments, which is
essential for various cellular processes including protein degradation and
receptor-mediated endocytosis (Pamarthy et al., 2018). The
overexpression of this complex may indicate enhanced cellular activity and

metabolic processes associated with cancer progression.

In the comparison between current and never smokers (Tumor) where
genes are underexpressed, several cellular components related to vesicle
formation and membrane structures were identified. These include
vesicles, the side of the membrane, the external side of the plasma
membrane, extracellular exosomes, and extracellular vesicles. These
components are integral to processes such as intracellular transport, cell
communication, and the immune response. Underexpression in tumors
may suggest a reduction in these critical cellular functions, potentially

contributing to tumor development and immune evasion.

In the comparison between tumor and normal tissues where genes are
underexpressed, several components critical for maintaining cellular
structure and function were identified. These include the cell periphery,
plasma membrane, extracellular region, cell surface, and the external
encapsulating structure. The cell periphery and plasma membrane are

vital for cell integrity and communication. The extracellular region and cell
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surface are involved in interactions with the extracellular matrix and other
cells, which are crucial for tissue organization and function. The external

encapsulating structure provides structural support and protection to cells.
Underexpression of these components in tumors suggests a breakdown in

these critical functions, facilitating tumor invasion and metastasis.

For the comparison between tumor and normal tissues where genes are
overexpressed, components such as the immunoglobulin complex,
extracellular region, extracellular space, nucleosome, and cell periphery
were highlighted. The nucleosome is involved in the organization and
regulation of DNA, playing a critical role in gene expression and cellular
function. Overexpression of these components in tumors indicates an
increase in cellular activities related to immune response and gene

regulation, which could be a response to the presence of cancer cells.

In the age-related comparison where genes are overexpressed,
components such as the immunoglobulin complex, extracellular region,
extracellular space, cell periphery, and blood microparticles were
highlighted. The immunoglobulin complex is vital for the immune
response, with antibodies playing a key role in identifying and neutralizing
pathogens and cancer cells. The extracellular region and space, along with
blood microparticles, are crucial for intercellular communication and the
immune response. The cell periphery, including structures involved in cell
signaling and interaction with the extracellular environment, is essential
for maintaining cellular integrity and function. Overexpression of these
components in older individuals may reflect an enhanced immune
surveillance mechanism, potentially impacting the body's ability to

recognize and respond to cancer cells.
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Dot Plot of GO:Cellular Components for Smoking Dataset
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Figure 3.18: Dot Plot of GO Cellular Components for Smoking Dataset. This plot show Gene
Ontology (GO) Cellular Components associated with smoking category, age, sex-specific tissues,
and tumor presence. Symbols represent odds ratios (OR), with size indicating the magnitude of
the OR. Upward-pointing triangles denote overexpressed genes, while downward-pointing triangles
indicate underexpressed genes. The color gradient from purple to red represents adjusted p-values
(-log10), with red marking the most statistically significant findings.
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3.4.7 Molecular Functions (MF) from Gene Ontology (GO)

An enrichment analysis of Gene Ontology (GO) Molecular Functions (MF)
was conducted to explore the broader molecular implications of
differentially expressed genes identified in the study. Figure 3.19 visually
maps these associations across various conditions, including comparisons
between current and former smokers (Normal), current and never
smokers (Normal), former and never smokers (Tumor), age-related
differences, comparisons between males and females, and tumor versus

normal tissue comparisons.

In the comparison between current and former smokers (Normal), where
genes are overexpressed, flavonoid 3'-monooxygenase activity was
highlighted. However, it is important to note that flavonoid 3'-
monooxygenase does not exist in humans. This enzyme is specific to
plants, where it plays a role in the metabolism of flavonoids—compounds
known for their antioxidant and potential anti-cancer properties. The
identification of this activity in human gene expression data presents an
interpretive challenge and suggests possible issues with annotation or

Cross-species comparisons.

Similarly, in the comparison between current and never smokers
(Normal), flavonoid 3'-monooxygenase activity was again highlighted. The
repeated identification of this plant-specific enzyme in human data
underscores the complexity of interpreting such results and raises

questions about the accuracy of the annotations used.

In the comparison between former and never smokers (Tumor) where
genes are overexpressed, several dehydrogenase activities were
identified, including alcohol dehydrogenase (NADP+) activity, aldo-keto
reductase (NADP) activity, phenanthrene 9,10-monooxygenase activity,
indanol dehydrogenase activity, and trans-1,2-dihydrobenzene-1,2-diol
dehydrogenase activity. These enzymes are involved in the oxidation-
reduction processes essential for detoxifying carcinogens and other

harmful substances (Orywal et al., 2020). Overexpression of these
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activities may indicate enhanced detoxification capacity in response to the

carcinogenic environment associated with smoking.

In the comparison between tumor and normal tissues where genes are
underexpressed, several molecular functions crucial for cellular
communication and signaling were highlighted. These include protein
binding, signaling receptor binding, integrin binding, molecular function
regulator activity, and calcium ion binding. Underexpression of these
functions in tumors suggests a disruption in hormal signaling pathways,

which can contribute to uncontrolled cell growth and metastasis.

For the comparison between tumor and normal tissues where genes are
overexpressed, antigen binding was again significant, along with structural
constituent of chromatin, structural molecule activity, protein
heterodimerization activity, and cell adhesion molecule binding.
Overexpression of these functions indicates enhanced cellular activities
related to immune response, structural integrity, and cell-cell interactions,
potentially reflecting the body's attempt to counteract tumor growth and

spread.

In the comparison between males and females where genes are
overexpressed, various demethylase activities were highlighted, including
histone H3 demethylase activity, histone demethylase activity, protein
demethylase activity, demethylase activity, and 2-oxoglutarate-dependent
dioxygenase activity. These enzymes play crucial roles in the regulation of
gene expression through epigenetic modifications, which can impact

cancer development and progression.

In the age-related comparison where genes are overexpressed, antigen
binding was prominently identified. This function is critical for immune
surveillance and the identification of pathogens and cancer cells. The
overexpression of antigen binding in older individuals may suggest an
increased reliance on immune mechanisms to combat age-related changes

and the emergence of cancer cells.
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Dot Plot of GO:Molecular Functions for Smoking Dataset
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Figure 3.19: Dot Plot of GO Molecular Functions for Smoking Dataset. The dot plot shows
Gene Ontology (GO) Molecular Functions associated with smoking category, age, gender, sex-
specific tissues, and tumor presence. Upward-pointing triangles denote overexpressed genes, while
downward-pointing triangles indicate underexpressed genes. Larger symbols indicate higher odds
ratios (OR), while a color gradient from purple to red represents the significance of p-values (-
log10 scale).
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3.4.8 Validation of Differential Gene Expression Between Male

and Female Samples in Smoking Dataset

To ensure the robustness of the regression results, a validation check was
conducted to confirm the differential expression of all genes between male
and female samples. This followed the same structure as in Chapter 3.3.8.
The dataset underwent a filtration process to include only those genes
previously analyzed in the MaleVsFemale regression study. A
comprehensive search was performed to match these genes against
established lists of identifiers known to distinguish male from female gene
expressions. This step was crucial in verifying that the identified genes
were accurately reflecting sex-specific differences in expression, thereby

bolstering the credibility of the regression findings.

The selection of genes was based on their established roles in
differentiating male and female gene expressions, specifically focusing on
genes located on sex chromosomes (X and Y) and those known to be
influenced by sex-specific factors. The dataset was filtered to include only
those genes that were part of the MaleVsFemale regression analysis,
ensuring consistency and relevance in the validation process. Each gene
was cross-referenced with established databases and literature to confirm
its differential expression between male and female samples. Key sources
included scientific articles, genetic databases, and specialized studies on

sex-linked gene expression.

The verification process confirmed that certain genes located on the Y
chromosome, such as RPS4Y1, DDX3Y, ZFY, USP9Y, UTY, PSMA6P1,
LINC00278, TXLNG2P, PRKY, KDM5D, EIF1AY, and CD24P4, were
overexpressed in male samples as shown in Table 3.4. These genes are
known for their roles in male-specific functions and are typically not
present or not expressed in female samples due to the absence of the Y

chromosome.
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Similarly like in Chapter 3.3.8, the gene XIST, located on the X

chromosome, was verified to be underexpressed in male samples. XIST is

involved in X-chromosome inactivation, a process essential in female

samples to balance the dosage of X-linked genes (Brown et al., 1991).

An interesting case was the IGHG4 gene, located on chromosome 14,

which is not directly linked to sex chromosomes. However, its expression

levels can be influenced by sex-specific factors such as hormonal

differences and immune system variations. IgG4-related disease (1gG4-

RD), associated with the overexpression of IGHG4, shows a higher

prevalence in middle-aged and elderly males. This disease involves

fibroinflammatory infiltration of various organs and highlights how

immune responses can differ between sexes (Guinee, 2018).

Table 3.4: Differential expression of genes between male and female samples in smoking dataset

Ensembl ID

ENSG00000229807
ENSG00000129824
ENSG00000067048
ENSG00000012817
ENSG00000067646
ENSG00000183878
ENSG00000114374
ENSG00000215414
ENSG00000231535
ENSG00000131002
ENSG00000198692
ENSG00000099725
ENSG00000185275
ENSG00000211892

Gene
Name
XIST
RPS4Y1
DDX3Y
KDM5D
ZFY

uTyYy
USP9Y
PSMA6P1
LINC00278
TXLNG2P
EIF1AY
PRKY
CD24P4
IGHG4

Expr
Under
Over
Over
Over
Over
Over
Over
Over
Over
Over
Over
Over
Over

Over
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logFC AveExpr t

-5.38
6.54
5.33
4.49
3.51
4.46
3.77
3.05
2.79
3.89
3.03
3.02
1.84
1.06

2.51
5.03
4.15
3.58
2.92
3.56
3.1

3.12
2.45
3.2

2.61
2.64
2.36
6.2

-73.9
65.33
62.53
56.21
52.6

52.38
47.15
43.51
42.34
42.01
41.38
39.93
23.92
5.74

adj.P.val
(-log10)
infinite
299.9
288.43
260.91
244.34
243.40
218.04
199.52
193.41
191.73
188.44
180.68
89.59
5.46



The validation process confirmed that the genes exhibit differential
expression between male and female samples consistent with their known
biological roles and chromosomal locations. Genes on the Y chromosome
were consistently overexpressed in males, while XIST was underexpressed
in males, aligning with its function in X-chromosome inactivation in
females. The expression of IGHG4, although not sex-linked, was noted to
vary due to immune response differences and its association with 1gG4-
RD, more common in males. These findings support the reliability of the
regression results and underscore the importance of considering both

genetic and epigenetic factors in sex-specific gene expression studies.

3.4.9 Comprehensive Analysis of Gene Expression in Human

Protein Atlas (HPA) Tissues using Smoking Dataset

The Human Protein Atlas (HPA) provides an invaluable resource for
examining the distribution and expression levels of proteins across various
human tissues. Understanding these variations is critical for uncovering
the underlying biological mechanisms and their implications for health and
disease. This section presents a comprehensive analysis of gene
expression variations across different tissue types using HPA data. The
primary aim is to explore how gene expression is influenced by smoking
status, age, sex-specific differences, and tumor presence, thereby

identifying significant patterns and associations, as shown in Figure 3.20.

In the comparison of current smokers versus never smokers in tumor
tissues, salivary gland tissue exhibited significant underexpression,
indicating possible direct metastatic involvement or systemic effects on
gland function. Intestinal tissues also showed underexpression, suggesting
metabolic or inflammatory responses linked to lung cancer progression.
Similarly, comparisons between former smokers and never smokers in
tumor tissues revealed significant underexpression in the salivary gland,

reinforcing the possibility of persistent systemic effects or direct
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metastatic involvement. Salivary gland-type tumors of the lung are rare
and typically originate from the submucosal exocrine glands of the large
airways (Horio et al., 2024). These tumors are often misdiagnosed due to
their rarity and the need for differential diagnosis to distinguish between
primary and metastatic diseases. The management of these tumors
requires comprehensive knowledge of diagnostics, including molecular
characteristics, and treatment modalities like surgery, radiotherapy, and
chemotherapy. Persistent underexpression of salivary gland tissue in
smokers could reflect the complex interaction of systemic effects and

direct metastatic involvement associated with lung cancer progression.

The Tumor vs. Normal dataset was analyzed to understand the expression
patterns in cancerous versus normal tissues. Overexpressed genes were
prominently observed in lymphoid tissue, bone marrow, esophagus,
stomach, and intestine. These tissues exhibited significant overexpression,
reflecting active roles in tumor development and progression. For
instance, overexpression in lymphoid tissue may indicate an immune
response or lymphoid metastasis in lung cancer patients. Further analysis
revealed that significant underexpression was noted in the lung, fallopian
tube, adipose tissue, choroid plexus, and bone marrow. The lung tissue
showed marked underexpression, emphasizing its central involvement in

lung cancer.

Sex-specific differences in gene expression were also observed.
Underexpression was noted with a high odds ratio in tissues such as the
lung, highlighting differential regulatory mechanisms that may be at play

between males and females.

The analysis also identified overlapping comparisons for various tissues
and expression types. For example, intestine, lymphoid tissue, and
stomach 1 showed significant gene expression changes across multiple
comparisons including Age and Tumor vs. Normal. The lung was notable
for its significant underexpression in both the Tissue vs. Sex and Tumor

vs. Normal comparisons, reflecting its critical role in lung cancer
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pathology. The salivary gland was another tissue with significant overlaps,
showing underexpression in both Current vs. Never Tumor and Former vs.
Never Tumor comparisons, highlighting persistent systemic effects or

direct metastatic involvement.

Dot Plot of Tissue for Smoking Dataset with Over- and Underexpression
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Figure 3.20: Dot Plot of Differential Gene Expression Analysis in Tissues using Smoking
Dataset. This visualization illustrates the odds ratios (OR) for gene expression, where upward-
pointing triangles indicate overexpression and downward-pointing triangles represent
underexpression. The size of each symbol correlates with the odds ratio. The accompanying color
gradient denotes the adjusted p-value (-log10), highlighting the statistical significance of each
gene's differential expression across various tissues.
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3.4.10 Comprehensive Analysis of Gene Expression in

Numerical HPA Cell Types using Smoking Dataset

The Human Protein Atlas (HPA) provides an invaluable resource for
examining the distribution and expression levels of proteins across various
human cell types. Understanding these variations is essential for
uncovering the underlying biological mechanisms and their implications for
health and disease. This section presents a detailed analysis of gene
expression variations across different cell types using numerical HPA data,
focusing on how gene expression is influenced by smoking status, age,

sex-specific differences, and tumor presence, as shown in Figure 3.21.

In the comparison between current and never smokers with tumors,
several cell types exhibit significant underexpression. Distal enterocytes
show a loss of normal cellular function, possibly due to smoking-induced
damage or cancer-related changes. Similarly, proximal enterocytes
demonstrate underexpression, which may indicate compromised gut-lung
axis interactions and overall cellular health (Haldar et al., 2023).
Cholangiocytes exhibit reduced expression, highlighting systemic effects of
smoking and its indirect impact on lung tissue. Serous glandular cells'
underexpression points to potential disruptions in glandular secretions,
which could influence lung mucosal environments and cancer risk. Myeloid
dendritic cells show decreased expression, suggesting impaired antigen
presentation and immune surveillance in the lung microenvironment (Hato
et al., 2024).

Comparing former smokers to never smokers with tumors reveals
significant overexpression in specific cell types. Basal respiratory cells
have high odds ratios indicating substantial overexpression, reflecting
their role in maintaining respiratory epithelium and potential involvement
in tumorigenesis. Exocrine glandular cells show increased secretory
activity in response to past smoking, contributing to a pro-tumorigenic

environment.
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In the Tumor vs. Normal comparisons, there are notable findings for both
overexpressed and underexpressed genes. Overexpressed genes in
plasma cells reflect increased antibody production and immune response,
potentially aiding in tumor progression. Memory B-cells exhibit heightened
expression, suggesting an active immune role and possibly contributing to
inflammation and tumor microenvironment modulation. Erythroid cells
show increased expression, likely related to compensatory responses to
hypoxia within tumors, promoting angiogenesis and tumor survival
(Shevchenko et al., 2023). Naive B-cells' overexpression signifies
enhanced immune activation, influencing tumor-immune interactions. B-
cells generally show robust overexpression, indicating a significant

immune response that may affect tumor development and progression.

Conversely, underexpressed genes in adipocytes suggest metabolic
alterations and loss of adipose-related signaling in the tumor environment.
Endothelial cells show underexpression, reflecting compromised vascular
function critical for tumor growth and metastasis. Monocytes exhibit
decreased expression, indicating impaired immune responses and reduced
phagocytic activity within the tumor microenvironment. Lymphatic
endothelial cells' underexpression suggests disrupted lymphatic function,
impacting immune surveillance and fluid balance in the lungs. Alveolar
cells type 1 show reduced expression, affecting gas exchange and

indicating significant functional loss in lung cancer.

Significant age-related overexpression is observed in various cell types,
such as memory B-cells, naive B-cells, plasma cells, and B-cells. These
high odds ratios indicate enhanced metabolic activity or stress responses
in these cells as age advances, suggesting that aging leads to increased
metabolic activity or stress responses. This reflects an attempt to
counteract age-related declines in function or increased exposure to

damaging agents over time.
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In the context of tissue and sex interactions, significant underexpression
is observed in alveolar cells type 2 and type 1. This underexpression
suggests a loss of surfactant production, critical for lung function,
potentially exacerbating cancer-related lung dysfunction. Reduced
expression affects gas exchange, indicating significant lung impairment in

the context of cancer and sex differences.

Several cell types appear in more than one comparison, highlighting their
critical roles. Memory B-cells are involved in both Age_up and
TumorVsNormal_up comparisons, indicating their importance in aging and
cancer. Naive B-cells appear in Age_up and TumorVsNormal_up,
suggesting their role in immune responses across different conditions.
Plasma cells are found in Age_up and TumorVsNormal_up, reflecting their
significant role in antibody production and cancer progression. B-cells are
present in Age_up and TumorVsNormal_up, highlighting their importance
in immune surveillance and tumor interaction. Alveolar cells type 1 appear
in both TissueXSex_down and TumorVsNormal_down, indicating their

crucial function in lung health and disease.

This comprehensive analysis elucidates the complex regulatory
mechanisms underlying cell type-specific gene expression and identifies
potential targets for therapeutic intervention, particularly in smoking-
related diseases and cancer. Overexpressed genes in smoking-affected
cell types may reflect compensatory mechanisms or increased demand for
specific functions, while underexpressed genes could indicate declines in
critical pathways or cellular functions. Understanding sex-specific and age-
related differences in gene expression is crucial for developing targeted
treatments and interventions. Identifying overexpressed genes in tumor
cell types suggests potential therapeutic targets, whereas underexpressed

genes may represent lost tumor suppressor functions.
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Dot Plot of Cell Types for Smoking Dataset with Over- and Underexpression
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Figure 3.21: Dot Plot of Top 20 differential gene expression analysis in cell types for the
smoking dataset with over- and underexpression. The triangles indicate over- or
underexpression. Triangles pointing upward represent overexpression, while those pointing
downward represent underexpression. Each triangle is color-coded according to a scale that
represents -log10(p-value), indicating the statistical significance of the over- or underexpression.
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3.4.11 Analysis of Shared Qualitative and Numerical Marker

Genes

The study of cell type ontologies associated with lung cancer through both
qualitative and numerical data from the Human Protein Atlas (HPA), as
well as qualitative data from the Human Ensemble Cell Atlas (hECA)
enriches our understanding of the molecular landscape within the lung
cancer microenvironment. By visualizing the odds ratios and adjusted p-
values across different cell types, as illustrated in Figure 3.22, variations
in gene expression under diverse experimental conditions can be

examined.

Significant findings from this analysis include the following observations.
Alveolar cells type 2 are markedly downregulated in TissueXSex
interactions and when comparing tumor versus normal tissues, which may
reflect the impact of sex-specific factors and the aggressive nature of
tumor growth on alveolar function. Endothelial cells exhibit significant
downregulation in tumor versus normal tissue comparisons, indicating
possible alterations in vascular structures within tumors or changes in
angiogenic signaling. Macrophages and smooth muscle cells demonstrate
notable changes in TumorVsNormal comparisons, possibly linked to their
roles in tumor-stroma interactions and structural integrity of lung tissue
(Cao et al., 2024; Ramamonjisoa & Ackerstaff, 2017).

B-cells show enhanced expression levels in both age-related conditions
and tumor versus normal comparisons, particularly noted in the hECA and
numerical HPA marker genes. This suggests a potential role of B-cells in
age-associated immune responses and their adaptation within the tumor
microenvironment. In an intriguing anomaly observed in our empirical
findings, B-cells displayed both upregulation and downregulation in the
numerical tumor versus normal comparisons conducted using the Human
Protein Atlas (HPA). Specifically, the comparison
"Num_TumorVsNormal_up" shows B-cells being significantly upregulated

with an odds ratio of approximately 6.97 and a high adjusted p-value (-

137



log10) of 49.52, suggesting a robust overexpression in certain tumor
environments. Conversely, the same cell type in the comparison
"Num_TumorVsNormal_down" exhibits downregulation with a much lower
odds ratio of about 1.55 and an adjusted p-value (-log10) of 3.20,
indicating a relatively subdued expression. Appendix A.1 has a table of all
adjusted p-values in scientific notation. This division in B-cell expression,
characterized by distinct upregulation and downregulation within the same
experimental framework, hints at complex, context-dependent roles of B-
cells in the tumor microenvironment. Notably, the underexpressed B-cells
demonstrate significantly lower odds ratios and p-values compared to
their overexpressed counterparts, which may reflect variations in immune
responses or cellular adaptation mechanisms triggered by different tumor
microenvironments. Research indicates that B cells can contribute
significantly to tumor immunity through various mechanisms, including
the production of antibodies and cytokines, and modulation of T-cell
responses (Zhang et al., 2023). These functionalities underscore the dual
nature of B-cell activities, where they can both support and inhibit tumor
growth depending on their state and the surrounding microenvironmental

conditions.

The behavior of fibroblasts within the tumor versus normal comparisons
reveals significant insights into their role in lung cancer. In the numerical
comparisons from HPA, fibroblasts were observed both upregulated and
downregulated, suggesting variable interactions with the tumor
microenvironment. Specifically, in the comparison
"Num_TumorVsNormal_down," fibroblasts demonstrated a substantial
upregulation with an odds ratio of approximately 6.09 and a high adjusted
p-value (expressed as -log10) of 43.75, indicating a strong association
under these conditions. Conversely, the "Num_TumorVsNormal_up"
comparison showed a lesser degree of upregulation with an odds ratio of

about 2.17 and a lower adjusted p-value of 2.72.
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Further analysis using qualitative data from hECA also showed fibroblasts
experiencing both upregulation and downregulation. The
"TumorVsNormal_hECA_down" comparison displayed a moderate
upregulation with an odds ratio of 5.26 and an adjusted p-value of 2.37,
while the "TumorVsNormal_hECA_up" comparison exhibited a more
pronounced upregulation with an odds ratio of 11.79 and an adjusted p-

value of 3.16.

These observations underline the dual nature of fibroblast behavior in lung
cancer, potentially contributing to both tumor support through the
construction of tumor microenvironments and resistance against tumor
progression. Fibroblasts, particularly cancer-associated fibroblasts (CAFs),
have been shown to contribute both to tumor progression and resistance
mechanisms. They are implicated in various oncogenic processes such as
angiogenesis, invasion, metastasis, and modulation of therapy resistance.
The identification of specific fibroblast subtypes and their signaling
pathways offers potential targets for therapeutic intervention, aimed at
manipulating their tumor-promoting and -resisting roles (Fiori et al.,
2019; Joshi et al., 2021). The variability in their expression and the
significance of their regulatory effects highlight the need for further
investigation into the specific signals and pathways that govern fibroblast
activity in different tumor conditions. This nuanced understanding could
lead to targeted therapies that manipulate fibroblast functions to hinder

tumor growth and progression.

These observations underscore the complex interplay between different
cell types in the lung and their responses to both intrinsic factors like sex
and age and extrinsic pressures such as tumor presence. The implications
of these findings are profound, suggesting that targeted therapies need to
consider not only the heterogeneous nature of lung tumors but also the

diversity of the cellular landscape in which these tumors exist.
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Dot Plot of Cell Type Ontologies (hECA, qualitative HPA and numerical HPA)
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Figure 3.22: Dot plot of cell type ontologies illustrating gene expression variations in
lung cancer, using data from the Human Ensemble Cell Atlas (hECA) and the Human
Protein Atlas (HPA). This plot arranges cell types vertically and experimental conditions
horizontally, distinguishing "Num_" prefixed measurements from numerical HPA marker genes and
others from qualitative hECA and HPA markers. Only cell types shared between numerical and
qualitative marker genes are shown. Dot sizes indicate the Odds Ratio, illustrating expression
strength, while the color gradient shows statistical significance (-log10 adj. p-value scale).
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4 Discussion

This chapter evaluates the significant findings of the study, contextualizing
them within the broader scientific literature on lung cancer genomics and
assessing their implications for future research and clinical practice.
Through an in-depth analysis of differentially expressed genes between
tumor and normal lung tissues, and the elucidation of the molecular
impacts of smoking on gene expression, this chapter seeks to bridge
empirical data with established theoretical frameworks. It explores the
interplay between genetic factors and environmental influences,

enhancing our understanding of lung cancer pathophysiology.

The findings from the use of the CellTypeGenomics package, which
facilitated the analysis of complex genomic data from The Human Protein
Atlas (HPA) and The Cancer Genome Atlas (TCGA), are evaluated. This
evaluation assesses the tool's efficacy in identifying and analyzing cell-
type origins of differentially expressed genes, providing a cornerstone for
understanding the cellular dynamics at play in tumor environments versus
normal tissues. Furthermore, the impact of smoking on gene expression
patterns offers insight into how environmental factors modify genomic
landscapes, which is essential for comprehending the variability in tumor

biology and patient responses to treatments.

Comparative analyses between over-representation analysis and cellular
deconvolution are presented to highlight the methodological strengths and
potential areas for further enhancement. The synthesis of findings from
these comparisons establishes a perspective on the current research

landscape and the contributions of this study.

Moreover, this chapter discusses the clinical ramifications of the research,
considering the potential for the findings to inform early detection

strategies, prognosis, and personalized therapy approaches. It critically
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evaluates the strengths and limitations of the study, offering a balanced
view that underscores both the scientific advancements achieved, and the
challenges encountered. This chapter provides an integrated analysis of
the study's findings with a broad discussion on the cell-type origins of
differentially expressed genes in lung cancer. It connects empirical data
with the theoretical constructs that have traditionally guided lung cancer
research, illuminating the interplay between genetic dynamics and
environmental influences such as smoking. This examination not only
deepens our understanding of the molecular underpinnings of lung cancer
but also evaluates the implications for future research and clinical

practice.

By evaluating the significance of the identified genes and their cellular
origins, this discussion contextualizes the results within the broader field
of lung cancer genomics. It reflects on how these insights enhance our
comprehension of tumor biology and patient variability, supported by
meticulous comparisons with existing literature and the integration of
bioinformatics tools. This approach validates the research methodology
and results, explores the clinical implications of the findings, and critically
assesses the strengths and limitations of the study. This chapter
underscores the contributions of this research to the field and outlines the

path forward for subsequent investigations.

4.1 Interpretation of Results

The overarching aim of this thesis was to explore the cell-type origins of
differentially expressed genes associated with lung cancer, with a
particular focus on how smoking impacts gene expression. Leveraging
data from The Human Protein Atlas (HPA) and The Cancer Genome Atlas
(TCGA), the study has provided significant insights into the molecular

mechanisms underpinning lung cancer.
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4.1.1 Differential Expression in Tumor vs. Normal Tissue

This thesis utilizes data from The Cancer Genome Atlas (TCGA) to
elucidate significant differences in gene expression between tumor and
normal lung tissues. Incorporating analyses on the impact of smoking
enriches our understanding of environmental contributions to these
molecular disparities. A comprehensive examination reveals distinct
patterns of gene expression alterations, particularly emphasizing the
consistent upregulation of genes fundamental to cancer progression, such

as those governing cell cycle control, DNA repair, and apoptosis.

A key finding from this study is the significant overexpression of bronchial
epithelium basal cells in tumor tissues, suggesting their pivotal role in
cancer progression and their potential utility as biomarkers for detecting
malignant transformations within lung tissue. In contrast, type II alveolar
cells are notably underexpressed, signifying a loss of their normal
physiological roles under oncogenic stress, which could lead to impaired

lung function and alterations in the tumor microenvironment.

The Reactome Pathway Analysis further enriches these observations by
highlighting the predominant overexpression of cell cycle pathways,
elucidating their role in driving the uncontrolled cellular proliferation
characteristic of malignancies. This analysis also reveals a marked
underexpression of immune-related pathways, indicating sophisticated

mechanisms by which tumors may evade immune detection.

Further insights from Biological Processes (BP) derived from Gene
Ontology (GO) underscore the significant overexpression of mitotic cell
cycle processes and immune-related functions, such as immunoglobulin-
mediated responses and B cell-mediated immunity. These findings not
only depict the aggressive nature of tumor cells but also reveal potential
therapeutic targets that could harness these immune interactions to

combat cancer more effectively.
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Analyses of Cellular Components (CC) and Molecular Functions (MF)
highlight the crucial roles of the immunoglobulin complex and antigen-
binding functions, which are significantly active within tumor biology.
These components offer unique opportunities for developing targeted
therapies that could disrupt these interactions to mitigate tumor growth

and spread.

The analysis of Differential Gene Expression (DEG) between tumor and
normal tissues provides insights into the consistent upregulation of a
diverse array of cell types. Notably, extravillous trophoblasts and
erythroid cells demonstrate substantial overexpression. The presence of
extravillous trophoblasts, typically associated with placental biology, may
suggest mechanisms of invasive behavior akin to tumor cells, illuminating
aspects of metastatic processes. Similarly, the upregulation of erythroid
cells might reflect changes in oxygenation within the tumor
microenvironment, potentially affecting tumor growth and treatment
responses. Furthermore, the significant upregulation of cell types such as
plasma cells, memory B-cells, naive B-cells, B-cells, suprabasal
keratinocytes, basal keratinocytes, and squamous epithelial cells in lung
cancer tissue provides essential insights into the disease's
pathophysiology. The pronounced activity of various B-cell types,
particularly plasma cells, suggests a robust immune response to tumor
antigens, critical for developing immunotherapy strategies. The
pronounced expression of keratinocytes and squamous epithelial cells
points to disruptions in epithelial cell differentiation and proliferation,

common features of lung carcinogenesis.

Moreover, the analysis reveals notable underexpression of genes typically
expressed in adipocytes, endothelial cells, and monocytes during
tumorigenesis, highlighting a loss of normal physiological functions. This
underexpression underscores the complex interplay between oncogenic

signals and the cellular environment, suggesting that tumor progression
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involves not only the activation of oncogenic pathways but also the

suppression of normal cellular functions.

This integrated analysis, propelled by the analytical capabilities of the
CellTypeGenomics package, offers a nuanced understanding of the
molecular differences between tumor and normal lung tissues, including
the specific exacerbating effects of smoking. By detailing how key genes
and pathways are altered in lung cancer, this research not only deepens
our molecular understanding of the disease but also highlights critical
targets for enhancing diagnostic and therapeutic strategies. These insights
emphasize the clinical relevance of the molecular differences identified,
suggesting their significant potential to impact lung cancer management
and treatment outcomes effectively. This comprehensive examination sets
a precedent for considering both genetic and environmental factors in
cancer research, paving the way for more personalized and precise

oncological interventions.

4.1.2 Differential Expression in Tissue X Sex

The investigation into differential gene expression across tissue types and
sexes, particularly in the context of lung cancer, employs a nuanced
analytical approach termed Tissue X Sex. This contrast analysis is
essential as it offers more detailed insights than straightforward
comparisons such as Male vs. Female or Tumor vs. Normal. Such
contrasts are crucial for revealing complex dynamics in gene expression
that are influenced by both sex and the disease state, providing a deeper

understanding of the underlying molecular mechanisms.

The Tissue X Sex contrast is precisely defined by the following

mathematical expression:

TissueXSex = (Tm—Tr) — (Nm—NF)
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In this formula, Tm and Tr denote gene expression levels in tumor tissues
from males and females, respectively, while Nm and Nr represent
expression levels in normal tissues from males and females, respectively.
This setup allows for an assessment of how sex differences influence gene

expression in tumor tissues as compared to normal tissues.

To further elucidate the effects of these sex-based differences, four
distinct scenarios have been identified, each reflecting a unique pattern of

differential expression:

1. Greater Negative Deviation in Tumor than in Normal (Tm<Tr
and |Tw—Te|>|Nm—NFr|): This scenario suggests a more pronounced
decrease in gene expression in male tumors than in female tumors,
and to a greater extent than observed in normal tissues, pointing to
enhanced gene repression in male tumors.

2. Less Pronounced Positive Deviation in Tumor than in Normal
(Tm<Tr and |Tu—Tr|<|Nm—NFf|): Here, the increase in gene
expression in tumors is less pronounced compared to that in normal
tissues, indicating a subdued activation of expression in the tumor
environment.

3. Greater Positive Deviation in Tumor than in Normal (Tv>Tr
and |Tuw—Te|>|Nm—NFr|): This pattern demonstrates an increase in
gene expression in male tumors compared to female tumors, which
is greater than the difference observed in normal tissues. This
suggests an active sex-specific regulatory mechanism modifying
gene expression in the tumor environment.

4. Lesser Positive Deviation in Tumor than in Normal (Tw>Tr and
| Tm—Tr| <|Nm—NEf|): This final scenario shows increased gene
expression in male tumors compared to female tumors, but with a
less severe difference than in normal tissues, implying a decrease in

positive regulatory influences within the tumor setting.

To further illustrate the process of determining which of the identified

scenarios applies when a cell type is underexpressed, consider the
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example of Alveolar cells type 2 as presented in Chapter 3.3.10. This cell
type is underexpressed in the Tissue X Sex contrast. Utilizing the
CellTypeGenomics package, a comprehensive Fisher test analysis was
conducted, resulting in the identification of 12 genes that align with the
first scenario. This scenario highlights that Alveolar cells type 2 are
underexpressed in male tumors compared to female tumors, a pattern not
observed in normal tissues. This consistent underexpression of Alveolar
cells type 2 in male tumors, but not in normal tissues, suggests the
existence of a sex-specific molecular pathway potentially significant in the

pathogenesis of lung cancer.

The detailed analysis of the significant 43 Ensembl IDs derived from the
Tissue X Sex regression contrast reveals important insights into gene
expression patterns influenced by sex in lung cancer. Among these
significant IDs, 15 fall under Scenario 1, indicating a greater negative
deviation in tumors compared to normal tissues. Additionally, 3 Ensembl
IDs correspond to Scenario 4, signifying a lesser negative deviation in

tumors than in normal tissues.

For overexpressed genes, 25 Ensembl IDs align with Scenario 3. This
scenario represents a greater positive deviation in tumors than in normal
tissues. These findings suggest a complex regulation of gene expression
influenced by both sex and the disease state in lung cancer. The increased
expression of these genes in male tumors compared to female tumors,
coupled with their lower expression in hormal tissues, implies an active
role in sex-specific tumorigenesis driven by regulatory mechanisms unique

to the tumor environment.

Understanding such patterns is crucial for developing targeted therapeutic
strategies that effectively account for sex-specific variations in gene
expression. By identifying specific genes that follow distinct patterns of
differential expression, researchers can pinpoint potential targets for

therapeutic intervention. This strategy enhances the precision of

147



treatments and underscores the necessity of integrating molecular

diagnostics into clinical practices to optimize patient outcomes.

4.1.3 Impact of Smoking on Gene Expression

Chapter 3.4 provides a comprehensive analysis of how smoking status
profoundly influences gene expression within lung cancer tissues, utilizing
extensive data from the Human Protein Atlas (HPA). This analysis
underscores the complexity of gene expression changes across various cell
types and elucidates the intricate relationships between smoking, tumor
development, and tissue-specific variations. The findings indicate that
smoking not only triggers oncogenic processes but also leaves a lasting
molecular imprint that significantly shapes the disease's progression and

response to treatment.

The study identified 671 genes significantly overexpressed in tumor
tissues compared to normal tissues, indicating their potential roles in
cancer progression and their linkage to smoking. Conversely, 2161 genes
were significantly underexpressed in tumor tissues, reflecting a loss of
normal cellular functions and possible tumor suppressive properties being

overridden by oncogenic processes.

In particular, genes involved in xenobiotic metabolism pathways were
notably upregulated among smokers. This overexpression reflects a
biological adaptation aimed at detoxifying the myriad of harmful
compounds present in tobacco smoke. The upregulation of these pathways
highlights the body’s attempt to counteract the carcinogenic effects of
smoking-related compounds, which can directly contribute to DNA damage

and subsequent cancer initiation.

Reactome Pathway Analysis further highlighted pathways related to cell
cycle control, such as Cell Cycle and Mitotic Cell Cycle, which were
predominantly overexpressed. This signifies their vital role in the rapid

proliferation characteristic of cancer cells. Immune-related pathways also
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showed increased activity, suggesting a complex interplay within the
tumor microenvironment that could facilitate immune evasion and tumor

growth.

Biological Processes from Gene Ontology (GO) analysis revealed that
processes involved in the metabolism of xenobiotics by cytochrome P450
were notably overexpressed. This links smoking directly to increased lung
cancer risk through the metabolic activation of carcinogens. Sensory
perception pathways, particularly those related to chemical stimulus
detection, were underexpressed, potentially reducing the lung's ability to

detect and respond to carcinogenic threats.

The study also conducted a comprehensive analysis of gene expression in
HPA cell types, comparing smokers and non-smokers. Significant
underexpression in current smokers was observed in distal enterocytes
and myeloid dendritic cells, indicative of smoking-induced damage and
compromised immune surveillance. Conversely, notable overexpression in
former smokers was observed in basal respiratory cells and exocrine
glandular cells, suggesting alterations in respiratory epithelium and
secretory processes potentially contributing to a pro-tumorigenic
environment. Enhanced expression in plasma cells and memory B-cells
across different smoker categories points to an adaptive immune
response, while alterations in metabolic pathways underline the

physiological impact of smoking on tumor and normal tissues alike.

A focused analysis of qualitative and numerical marker genes provided
substantial insights into how cellular responses to smoking influence
tumor progression. This detailed evaluation revealed that alveolar cells
type 2, crucial for gas exchange, were markedly downregulated in
interactions influenced by sex and in comparisons between tumor and
normal tissues. This downregulation underscores the impact of sex-
specific factors and the aggressive nature of tumor growth on alveolar
function, potentially compromising lung function and responsiveness to

treatment. Similarly, alveolar cells type 1 also showed significant
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downregulation under these conditions, both in the Human Ensemble Cell
Atlas (hECA) for qualitative marker genes and in the Human Protein Atlas
(HPA) for numerical marker genes. The consistent downregulation across
these two cell types raises concerns about the overall integrity of the
lung's alveolar structure in the face of tumorigenic stress, possibly leading

to diminished lung capacity and impaired respiratory function.

Furthermore, endothelial cells, which form the linings of blood vessels,
exhibited significant downregulation in tumor versus normal tissue
comparisons, indicating potential alterations in vascular structures or
changes in angiogenic signaling within tumors. Such vascular changes are
crucial as they could affect tumor blood supply, influencing tumor growth
and metastasis potential, thereby highlighting the critical role of the

vascular component in cancer progression.

In addition, B-cells, known for their role in the immune response, showed
enhanced expression levels in both age-related conditions and in
comparisons between tumor and normal tissues. This increase suggests
their involvement in age-associated immune responses and their
adaptation within the tumor microenvironment. The numerical HPA also
found a significant downregulation of B-cells, but at a fraction of the
significant value of the upregulated B-cells, indicating a predominant
upregulation. The enhanced activity of B-cells could indicate a
compensatory mechanism to counteract the immunosuppressive
environment created by tumors, or it might reflect an age-related increase

in inflammatory responses that inadvertently support tumor progression.

4.1.4 Utilization of Bioinformatics Tools and Integration with

Genomic Databases

The integration of The Human Protein Atlas (HPA) and The Cancer
Genome Atlas (TCGA) databases facilitated a comprehensive exploration

of gene expression variations across different cell types and conditions.
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The CellTypeGenomics package was pivotal in managing these complex
datasets, showcasing its utility in genomic research. The iterative
refinement and application of this package underscored its adaptability
and robustness, enhancing the statistical integrity and comprehensiveness

of the analysis.

Utilizing the TCGA database allowed for a thorough examination of gene
expression profiles in lung cancer, while the integration with HPA data
provided functional context to the genetic information. This dual-database
approach enriched the study by combining genomic and proteomic data,
offering a holistic view of the molecular mechanisms underpinning lung

cancer.

The CellTypeGenomics package enabled precise mapping of differentially
expressed genes (DEGSs) to specific cell types, facilitating a deeper
understanding of cellular dynamics in lung cancer. Its flexibility in
handling large datasets and capability for iterative refinement were crucial

for the analysis.

The effective use of bioinformatics tools and databases not only enhanced
the accuracy and depth of the findings but also demonstrated the power of
computational approaches in genomic research. This approach reinforced
the reliability of the findings and highlighted the potential of integrated

bioinformatics tools in advancing genomic research.

4.2 Contextualization and Synthesis of Findings

This thesis significantly advances our understanding of lung cancer
genetics, with a particular focus on how smoking modulates gene
expression. The contextualization of these findings draws upon and is
compared with significant prior studies, including the influential work by

Alexandrov et al. (2016). This synthesis not only confirms previous
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observations but also provides new insights that enhance our

comprehension of lung cancer’s molecular basis.

4.2.1 Comparative Analysis with Other Studies

The observed differential expression aligns with findings from pivotal
studies that mapped genomic changes in lung cancers, corroborating the
role of specific genes in tumorigenesis. The impact of smoking on gene
expression echoes the mutational signatures identified by Alexandrov et
al. (2016), which linked smoking with increased mutation burdens and
specific mutational signatures in lung cancers. This alignment provides a
functional context to the mutational changes induced by smoking,
enhancing the understanding of their role in cancer progression. For
instance, the upregulation of genes involved in xenobiotic metabolism
pathways observed in this study reflects the body's response to detoxify
harmful compounds found in tobacco smoke, a process highlighted in the

mutational signatures described by Alexandrov et al.

Additionally, studies by Govindan et al. (2012) and Cancer Genome Atlas
Research Network (2014) have shown similar patterns of gene expression
changes associated with smoking in lung cancer, supporting the findings
of this thesis. These studies reinforce the notion that smoking induces

widespread genetic alterations that contribute to lung carcinogenesis.

4.2.2 Bridging Molecular Insights with Clinical Observations

The study’s molecular insights correlate well with clinical observations
regarding differential treatment responses in smokers versus non-
smokers. This correlation suggests that gene expression profiles
influenced by smoking could affect the tumor microenvironment and
response to therapy. For example, the alterations in immune-related

genes suggest modifications in the tumor microenvironment that could
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affect tumor immunity and potentially offer new targets for
immunotherapy in smokers. Understanding these molecular differences
can guide the development of targeted therapies, providing a more
personalized approach to lung cancer care and improving treatment

outcomes.

Studies by Schiller et al. (2002) and Herbst et al. (2008) have
documented differences in treatment efficacy between smokers and non-
smokers, which may be attributed to the molecular changes identified in
this thesis. These clinical observations highlight the potential for gene
expression profiles to serve as biomarkers for tailoring treatment

strategies.

By contextualizing these findings within existing literature, this thesis
underscores the critical role of smoking in shaping the genetic landscape
of lung cancer and highlights the importance of integrating genomic and
proteomic data to fully understand the impact of environmental factors on
cancer development. The alignment of this study's results with those of
Alexandrov et al. (2016), Govindan et al. (2012), and Cancer Genome
Atlas Research Network (2014) reinforces the validity of the findings and
contributes to a deeper, more nuanced understanding of lung cancer

genetics in the context of smoking.

4.2.3 Methodology Comparison and Integration

This chapter presents an in-depth comparison between the methodologies
employed in this study, specifically Over-Representation Analysis (ORA)
using the CellTypeGenomics package, and cellular deconvolution methods,
exemplified by CIBERSORTX. It further discusses the potential advantages
of integrating these methodologies to refine cell type-specific annotations

in lung cancer research.
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Over-Representation Analysis (ORA) is a statistical technique designed to
ascertain if a predefined group of genes, such as those linked to specific
cell types, is more frequently represented within a larger gene set than
would be expected by chance. This process typically involves comparing a
list of differentially expressed genes (DEGs) against a background gene
set using statistical tests like the hypergeometric test or Fisher's exact
test to determine the probability that the observed gene overlap occurs by

chance.

In our methodology, the CellTypeGenomics package maps DEGs to cell
types using marker genes cataloged in the HPA. This process involves
mapping Ensembl gene IDs to their respective cell types based on HPA
data, followed by statistical analysis to verify the presence of these cell
type-specific genes among the DEGs using Fisher's exact test,
complemented by the Benjamini-Hochberg procedure to control the false

discovery rate (FDR).

Unlike cellular deconvolution methods like CIBERSORTX, which estimate
cell type proportions, ORA as implemented in our study focuses on
identifying statistically significant links between DEGs and specific cell
types, thereby offering advantages such as precision in annotation
through comprehensive databases like the HPA and enhanced statistical

rigor from combining Fisher’s exact test with FDR correction.

Cellular deconvolution, particularly through the application of
CIBERSORTY, is a sophisticated approach utilized to annotate genes with
cell type identities based on bulk RNA sequencing data. CIBERSORTXx
applies a gene expression matrix based on bulk RNA sequencing data and
a signature expression matrix from known cell types (often derived from
single-cell RNA sequencing data) to decompose experimental RNA
sequencing data into proportions of cell types present, summarized in a
cell type matrix. Cellular deconvolution applies the signature matrix and
the cell type matrix to explain the gene expression matrix, presenting a

prediction problem. This methodology is especially beneficial in analyzing
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heterogeneous tissues, where direct measurement of individual cell types
is impractical. A notable issue with CIBERSORTX is its limitation to only
identify cell types present in the signature matrix, which may not
encompass all cell types within a sample. Thus, CIBERSORTX's ability to
identify and quantify cell types is confined by the data provided in the
signature matrix. Furthermore, CIBERSORTx often exhibits discrepancies
in the relative percentages of cell types it predicts, although the relative
difference across similar cell types often aligns with other methodologies
like Fluorescence-Activated Cell Sorting (FACS).

Potential Integration of Methods

Future research could benefit from integrating cellular deconvolution and
over-representation analysis methodologies. Cellular deconvolution
estimates cell type proportions within a sample, providing quantitative
insights into tissue composition. When combined with over-representation
analysis, which identifies significant associations between differentially
expressed genes and specific cell types, this approach offers a

comprehensive view of the cellular landscape in complex tissues.

Using cellular deconvolution to estimate cell type proportions, followed by
over-representation analysis to map gene expression changes to specific
cell types, enhances precision in cell type-specific annotations. The
CellTypeGenomics package, with its detailed gene annotation capabilities
using data from the Human Protein Atlas, complements this approach by
providing high-resolution insights into the cellular origins of gene
expression changes. Furthermore, cellular deconvolution includes
quantization per sample, allowing for more precise measurements of gene

expression at the cellular level.

In lung cancer research, this combined methodology can elucidate how
smoking influences gene expression at the cellular level, leading to refined

models of disease progression and treatment response. Such integrated
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models are invaluable for developing personalized therapeutic strategies,

accounting for tumor heterogeneity and environmental factors.

Beyond lung cancer, this integrated approach can be applied to other
cancers and complex diseases, broadening the impact of bioinformatics
tools in genomic research. Leveraging detailed gene annotation
capabilities and proportional insights enables a nuanced understanding of

gene expression dynamics.

4.3 Implications of the Findings

This section explores the practical implications of our findings, discussing
how they contribute to lung cancer research, influence clinical

applications, and impact broader oncological practices.

4.3.1 Clinical Implications and Therapeutic Opportunities

Our findings provide potential targets for therapeutic intervention through
the identification of genes differentially expressed in tumor versus normal
tissues. These genes, particularly those involved in cell proliferation and
survival pathways, could serve as focal points for the development of
targeted drug therapies. Inhibiting these upregulated genes in tumors
might effectively reduce tumor growth or improve the response to existing
treatments. Additionally, understanding the modulation of gene
expression by smoking offers a clear path toward personalized medicine.
Given the distinct gene expression profiles associated with different
smoking histories, treatment plans could be tailored more precisely to
enhance efficacy and minimize side effects, based on a patient's smoking
status. This approach would not only personalize treatment but also

optimize resource allocation in clinical settings.
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4.3.2 Potential for Early Detection and Prognosis

The identification of specific biomarkers from differentially expressed
genes in early-stage tumors presents opportunities for early detection.
Developing diagnostic tests based on these biomarkers could significantly
improve early detection rates, leading to earlier intervention and
potentially better patient outcomes. Furthermore, the gene expression
profiles linked to smoking status might also provide prognostic tools,
helping predict the aggressiveness of the disease and guiding treatment
decisions. Early detection biomarkers can also facilitate routine screening,

allowing for timely treatment and improved survival rates.

4.3.3 Enhancing the Understanding of Lung Cancer
Pathophysiology

The comprehensive analysis enabled by the CellTypeGenomics package
enhances our understanding of lung cancer's pathophysiology. By
elucidating the cellular origins of differentially expressed genes and their
association with environmental factors like smoking, this study contributes
to a deeper understanding of how external factors can influence cellular
behavior and disease progression. These insights are crucial for
developing new models of lung cancer that reflect its biological complexity
more accurately, potentially influencing both research and clinical
approaches to the disease. Additionally, integrating genomic and
proteomic data facilitates a more holistic understanding of the interactions

between genetic and environmental factors in lung cancer development.

4.3.4 Policy and Public Health Implications

The findings underscore the importance of smoking cessation programs
and policies aimed at reducing tobacco use to mitigate lung cancer risk.

Public health strategies can be informed by the molecular evidence linking
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smoking to specific genetic alterations, reinforcing the need for preventive
measures and education. This research supports the development of
targeted public health campaigns that address the molecular impact of
smoking, potentially reducing the incidence of lung cancer and improving

population health outcomes.

4.4 Challenges and Considerations

While the study provided valuable insights into the molecular dynamics of
lung cancer, it faced several challenges inherent in the integration and
interpretation of complex genomic data. The reliance on public genomic
databases such as TCGA and HPA introduced potential biases due to
variations in sample collection, data processing, and demographic
diversity. These factors could limit the generalizability of the findings, as
variations in sample handling and population representation might

influence the observed gene expression patterns.

Integrating diverse data sources posed additional challenges, particularly
in harmonizing data across different platforms and ensuring consistency in
annotations and gene identifiers. These issues underscore the need for
robust bioinformatics pipelines capable of managing and standardizing
heterogeneous datasets effectively. Iterative refinement and validation of
these pipelines are essential to improve the reliability of genomic

analyses.

Moreover, interpreting differential gene expression and pathway analysis
results requires careful consideration of biological context and
experimental conditions. The dynamic nature of gene expression,
influenced by both intrinsic and extrinsic factors, necessitates robust
validation of computational predictions through experimental methods
such as quantitative PCR (gPCR) and functional assays. This validation is
crucial to ascertain the biological relevance of identified gene expression

changes and their associations with specific cell types and pathways.
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To overcome these challenges, continuous efforts are needed to refine
data collection and analysis techniques in genomic research. Enhancing
the accuracy and completeness of public genomic databases through
improved sample collection protocols, standardized data processing
methods, and comprehensive metadata annotation is imperative.
Additionally, fostering collaborations between computational and
experimental biologists can help bridge the gap between theoretical
predictions and empirical validation, thus strengthening the overall

robustness of genomic studies.

In summary, while this study has provided valuable insights into the
molecular dynamics of lung cancer, the challenges encountered highlight
the importance of continuous methodological improvements and
interdisciplinary approaches in genomic research. Addressing these
challenges will ensure that future studies can build on these findings with
greater accuracy and generalizability, further advancing our understanding

of lung cancer and its underlying mechanisms.

4.5 Strengths and Limitations

4.5.1 Strengths

One of the primary strengths of this study is the utilization of advanced
bioinformatics tools, particularly the CellTypeGenomics package. This
package is not only tailored for cell-type origin studies to ensure relevancy
and precision but is also optimized for efficiency, facilitating rapid analysis
of extensive gene lists. Being open source, it encourages collaboration and
further development within the scientific community, enhancing the
potential for innovative approaches. The integration of large-scale
genomic data from The Human Protein Atlas (HPA) and The Cancer
Genome Atlas (TCGA) provided a robust framework for a comprehensive

analysis of gene expression variations. This approach enabled a detailed
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exploration of complex genetic interactions and their implications for lung
cancer, offering novel insights into how smoking modulates gene
expression at the cellular level. Additionally, the statistical rigor applied
through methods like Fisher’s exact test and the Benjamini-Hochberg

procedure ensured the reliability and accuracy of the results.

4.5.2 Limitations

Despite these strengths, the study has certain limitations. The reliance on
secondary genomic data sources, such as The Human Protein Atlas (HPA)
and The Cancer Genome Atlas (TCGA), introduces potential biases related
to data collection and sample heterogeneity. For example, the findings
indicate that males are generally diagnosed at older ages, particularly in
later stages of lung cancer. This trend may be influenced by several
factors, including higher smoking rates among males and potential delays
in seeking medical care, leading to later-stage diagnoses. These factors
may affect the generalizability of the findings and restrict the ability to

draw definitive causal inferences.

Additionally, our approach considers a data-driven gene selection method
where the Human Protein Atlas determines a numeric threshold for
signature genes. This can be contrasted with methods that employ strong
signature genes specific to particular cell types, adding a more qualitative
dimension to the analysis. While this method aids in the identification of
potential signature genes, it may also introduce biases by potentially
overlooking strong, type-specific signature genes that do not meet the
numeric threshold. Furthermore, the observational nature of the study
limits the ability to establish direct cause-and-effect relationships between
smoking and gene expression changes. Future research should aim to
incorporate primary data collection and experimental validation to confirm

these findings and address the identified biases. Expanding the study to
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include diverse populations and additional environmental factors could

also enhance the comprehensiveness and applicability of the results.
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5 Conclusion

This chapter synthesizes the findings from the investigation into the
molecular dynamics of lung cancer, reflecting on the implications of these
results for future research and clinical practice. It draws together the key
outcomes of the analyses conducted using The Human Protein Atlas (HPA)
and The Cancer Genome Atlas (TCGA), facilitated by the capabilities of the
CellTypeGenomics package. The conclusions drawn not only highlight
advances in understanding lung cancer biology but also underscore the
potential for these insights to inform more effective and personalized
treatment strategies. The following sections detail the principal findings,
their broader implications, the inherent challenges encountered, and the

recommended directions for future research.

5.1 Summary of Key Findings

The comprehensive investigation conducted in this thesis has yielded
significant insights into the differential gene expression between tumor
and normal lung tissues, particularly highlighting the impact of smoking
on these genetic alterations. Utilizing advanced bioinformatics tools,
including the CellTypeGenomics package, and genomic data from HPA and
TCGA, this study identified key genes that are significantly upregulated or
downregulated in tumors, offering valuable insights into the cellular
dynamics driving lung cancer progression and revealing potential targets

for therapeutic intervention and biomarkers for early detection.

A pivotal aspect of this research was associating these differentially
expressed genes with specific cell types, made possible through the
utilization of HPA data within the CellTypeGenomics package. This analysis

has significantly advanced our understanding of the cellular context of
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these gene expression changes and their roles in lung cancer. For
example, bronchial epithelium basal cells were significantly overexpressed
in tumor tissues, suggesting their vital role in cancer progression and their
potential as biomarkers for identifying malignant transformations.
Conversely, alveolar cells type II exhibited notable underexpression,
indicating a loss of their normal physiological roles under oncogenic

stress.

Further, the integration of gene ontology (GO) and Reactome pathway
analyses categorized these genes according to their roles in biological
processes, cellular components, and molecular functions, mapping the
disrupted functional pathways in lung cancer. The Reactome Pathway
Analysis underscored the predominant overexpression of cell cycle
pathways, elucidating their role in fostering uncontrolled cellular
proliferation, a hallmark of malignancy. Immune-related pathways showed
a marked underexpression, suggesting mechanisms by which tumors

evade immune surveillance.

The analysis of Differential Gene Expression (DEG) between tumor and
normal lung tissues reveals significant upregulation of various cell types,
such as erythroid cells, suggesting altered oxygenation in the tumor
microenvironment. Enhanced expression of plasma cells and different B-
cell types, alongside keratinocytes, indicates robust immune responses
and disruptions in epithelial cell functioning, which are critical for
understanding lung cancer pathophysiology and identifying potential
therapeutic targets. Conversely, the notable underexpression of genes in
adipocytes, endothelial cells, and monocytes suggests a loss of normal
functions, highlighting the dual nature of lung cancer progression through

oncogenic activation and suppression of regular cellular activities.

The study also revealed sex-specific differences in gene expression,
emphasizing the necessity for personalized therapeutic strategies. For
instance, the Tissue X Sex contrast analysis identified genes that exhibited

different patterns of expression between male and female tumors
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compared to normal tissues. This analysis provided insights into sex-
specific regulatory mechanisms that influence tumorigenesis, underscoring
the importance of considering sex as a biological variable in lung cancer

research and treatment.

Overall, the integration of TCGA and HPA data through the
CellTypeGenomics package has facilitated a nuanced understanding of the
molecular differences between tumor and normal lung tissues. This
research not only deepens our comprehension of lung cancer's molecular
basis but also highlights potential targets for diagnostic and therapeutic
strategies, paving the way for more personalized and effective
interventions. These insights have significant potential to impact lung
cancer management and treatment outcomes, emphasizing the
importance of integrating genetic and environmental factors in cancer

research.

5.2 Implications and Significance

The findings from this study have profound implications for the scientific
understanding and clinical management of lung cancer. By elucidating the
differential gene expression between tumor and normal lung tissues,
especially in the context of smoking, this research advances our
knowledge of the molecular underpinnings of lung cancer. This enhanced
understanding supports the development of more precise diagnostic tools

and targeted therapeutic strategies.

A key outcome of this study is the demonstration of the CellTypeGenomics
package as a powerful tool for researchers globally. While this study
specifically applies the package to lung cancer and the autoimmune
condition psoriasis, there is significant potential for its application across a
wide range of diseases. By identifying key genes and pathways that are
differentially expressed and associating these changes with specific cell

types, the CellTypeGenomics package enables the tailoring of treatments
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to individual genetic profiles and environmental factors, such as smoking
habits. This personalization of therapy is crucial for improving treatment

efficacy and patient outcomes.

The detailed insights provided by the CellTypeGenomics package into the
roles of specific cell types and molecular pathways in disease progression
are invaluable for developing new therapeutic strategies. For instance, the
identification of overexpressed bronchial epithelium basal cells and
underexpressed alveolar cells type II in tumor tissues suggests specific
cellular targets for intervention. Targeting these cell types and the
pathways they influence could lead to more effective treatments that

address the underlying mechanisms of lung cancer.

Moreover, the study's findings on the impact of smoking on gene
expression profiles highlight the need for considering smoking history in
the molecular profiling of lung cancer patients. Understanding how
smoking-induced alterations affect tumor biology can guide the
development of therapies that exploit these molecular vulnerabilities,
potentially improving the efficacy of treatments for smokers with lung

cancer.

Overall, the integration of genomic data from TCGA and HPA, facilitated by
the CellTypeGenomics package, has provided a comprehensive and
nuanced understanding of lung cancer biology. These insights have
significant potential to impact clinical practice by informing the
development of more personalized and targeted treatment strategies,
ultimately improving patient care and outcomes. The CellTypeGenomics
package stands as a promising resource for researchers worldwide,
offering the potential to make better and more informed decisions across
a wide range of diseases. This study underscores the importance of
integrating genomic and environmental data to refine therapeutic
approaches, paving the way for advancements in the precision and

effectiveness of disease treatments.
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5.3 Future Work

To broaden the impact and enhance the scientific rigor of this research,
future studies should prioritize the development and utilization of
experimental models to validate the causal relationships suggested in this
study. Longitudinal studies are particularly crucial for examining the
reversibility of smoking-related gene expression changes. These studies
will offer vital insights into the temporal dynamics of gene expression and
assess whether the alterations induced by smoking can be mitigated

following cessation.

Additionally, integrating survival analyses will be pivotal. Such analyses
are designed to explore the relationship between specific gene expression
levels and patient survival rates, providing essential insights into how
individual genes may influence the progression of cancer. This
understanding is particularly significant in oncology, where gene
expression data can directly inform therapeutic strategies and

prognostication.

The CellTypeGenomics package has demonstrated considerable potential
in this study, and future work should aim to validate its broader
applicability. This package could become a powerful tool for researchers
globally, applicable to a wide range of diseases, including various types of
cancer, autoimmune conditions, genetic disorders, physiological diseases,
degenerative diseases, and pathological infections. Future studies should
focus on validating this potential across diverse disease contexts to
establish the package's utility in different areas of biomedical research. By
doing so, the CellTypeGenomics package could significantly advance our
understanding of complex diseases and contribute to the development of

more effective and personalized therapeutic strategies.

Experimental validation of computational predictions is equally crucial.
Techniques such as quantitative PCR (qPCR), Western blotting, and

functional assays should be employed to confirm the pathways and
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mechanisms identified in this thesis. This step will not only strengthen the
reliability of the findings but also deepen our understanding of the

molecular impacts of smoking on lung cancer.

Furthermore, the utility of the CellTypeGenomics package should be
expanded to assess its performance across various cancer types. This
exploration will help validate the effectiveness of the developed tools and

may lead to notable advancements in cancer diagnostics and treatment.

Incorporating multi-omics approaches—including proteomics,
metabolomics, and transcriptomics—will provide a more comprehensive
view of the molecular mechanisms at play. This integrative strategy will
offer a holistic view of how smoking and other environmental factors
influence cellular processes, thereby elucidating the intricate interactions

between genetics and the environment in the development of cancer.

The application of machine learning and artificial intelligence (AI) offers a
transformative potential for advancing lung cancer genomic research.
These technologies can significantly enhance the ability to identify
complex patterns and predictive markers that are not apparent through
traditional methods. Machine learning models can be trained to predict
outcomes such as disease progression, response to treatment, and patient
survival rates from gene expression profiles. Moreover, Al can facilitate
the integration of multi-omics data, accelerating the analysis process and
improving the identification of potential therapeutic targets. Embracing
these advanced computational tools will likely advance personalized
medicine by enabling treatment plans tailored to the genetic profiles of
individual tumors, optimizing therapeutic efficacy while minimizing side

effects.

Collaborative efforts with clinical researchers will be essential for
translating these computational and experimental findings into clinical
practice. Linking predictive models and validations with real patient data

and outcomes will help in crafting personalized treatment strategies and
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enhancing prognostic tools. Such collaborative endeavors will ultimately
improve patient care in oncology, effectively bridging the gap between

research findings and their practical application in clinical settings.

168



References

Afshar-Kharghan, V. (2017). The role of the complement system in
cancer. The Journal of Clinical Investigation, 127(3), 780-789.

Alexandrov, L. B., Ju, Y. S., Haase, K., Van Loo, P., Martincorena, I., Nik-
Zainal, S., ... & Stratton, M. R. (2016). Mutational signatures associated
with tobacco smoking in human cancer. Science, 354(6312), 618-622.

Altschuler, S. J., & Wu, L. F. (2010). Cellular heterogeneity: do differences
make a difference? Cell, 141(4), 559-563.
https://doi.org/10.1016/j.cell.2010.04.033

Avila Cobos, F., Vandesompele, ]J., Mestdagh, P., & De Preter, K. (2018).
Computational deconvolution of transcriptomics data from mixed cell
populations. Bioinformatics, 34(11), 1969-1979.
https://doi.org/10.1093/bioinformatics/bty019

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate:
A practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society. Series B (Methodological), 57(1), 289-300.

Bellott, D. W., Hughes, J. F., Skaletsky, H., Brown, L. G., Pyntikova, T.,
Cho, T. 1., ... & Page, D. C. (2014). Mammalian Y chromosomes retain
widely expressed dosage-sensitive regulators. Nature, 508(7497), 494-
499,

Bernauer, U., Heinrich-Hirsch, B., Ténnies, M., Peter-Matthias, W., &
Gundert-Remy, U. (2006). Characterisation of the xenobiotic-metabolizing
Cytochrome P450 expression pattern in human lung tissue by
immunochemical and activity determination. Toxicology letters, 164(3),
278-288.

169


https://doi.org/10.1016/j.cell.2010.04.033

Bhandari, N., Walambe, R., Kotecha, K., & Khare, S. P. (2022). A
comprehensive survey on computational learning methods for analysis of

gene expression data. Frontiers in Molecular Biosciences, 9, 907150.

Blackburn, E. H. (2005). Telomeres and telomerase: their mechanisms of
action and the effects of altering their functions. FEBS letters, 579(4),
859-862.

Brown, C. J., Ballabio, A., Rupert, J. L., Lafreniere, R. G., Grompe, M.,
Tonlorenzi, R., & Willard, H. F. (1991). A gene from the region of the
human X inactivation centre is expressed exclusively from the inactive X
chromosome. Nature, 349(6304), 38-44.

Cancer Genome Atlas Research Network. (2014). Comprehensive

molecular profiling of lung adenocarcinoma. Nature, 511(7511), 543-550.

Cao, L., Meng, X., Zhang, Z., Liu, Z., & He, Y. (2024). Macrophage
heterogeneity and its interactions with stromal cells in tumour

microenvironment. Cell & Bioscience, 14(1), 16.

Carregaro, F., Stefanini, A. C. B., Henrique, T., & Tajara, E. H. (2013).
Study of small proline-rich proteins (SPRRs) in health and disease: a
review of the literature. Archives of Dermatological Research, 305, 857-
866.

Chaudhary, P., Xu, X., Wang, G., Hoj, J. P., Rampersad, R. R., Asselin-
Labat, M. L., ... & Onaitis, M. W. (2023). Activation of KrasG12D in subset
of alveolar Type II cells enhances cellular plasticity in lung

adenocarcinoma. Cancer Research Communications, 3(11), 2400-2411.

Chen, S., Luo, J., Gao, H., Li, F., Chen, Y., Li, J.,..& Zhang, X. (2022).
hECA: The cell-centric assembly of a cell atlas. iScience, 25(1).
https://doi.org/10.1016/j.isci.2022.104318

Chen, Z., Zhao, M., Li, M., Sui, Q., Bian, Y., Liang, J., Hu, Z., Zheng, Y.,
Lu, T., Huang, Y., Zhan, C., Jiang, W., Wang, Q., & Tan, L. (2020).

Identification of differentially expressed genes in lung adenocarcinoma

170


https://doi.org/10.1016/j.isci.2022.104318

cells using single-cell RNA sequencing not detected using traditional RNA
sequencing and microarray. Laboratory Investigation, 100(10), 1318-
1329. https://doi.org/10.1038/s41374-020-0428-1

Chiang, S. K., Chen, S. E., & Chang, L. C. (2021). The role of HO-1 and its

crosstalk with oxidative stress in cancer cell survival. Cells, 10(9), 2401.

Conesa, A., et al. (2016). A survey of best practices for RNA-seq data
analysis. Genome Biology, 17(1), 13.

de Mol, J., Kuiper, J., Tsiantoulas, D., & Foks, A. C. (2021). The dynamics
of B cell aging in health and disease. Frontiers in Immunology, 12,
733566.

Doll, R. & Hill, AB. (1950). Smoking and carcinoma of the lung. British

Medical Journal.

Chavez-Dominguez, R., Perez-Medina, M., Aguilar-Cazares, D., Galicia-
Velasco, M., Meneses-Flores, M., Islas-Vazquez, L., ... & Lopez-Gonzalez,
J. S. (2021). Old and new players of inflammation and their relationship

with cancer development. Frontiers in Oncology, 11, 722999.

Dransfield, B. & Brightwell, B. (n.d.). Fisher’s exact test: Use & misuse.
(2x2 contingency table, fixed factors, test of association).
https://influentialpoints.com/Training/Fishers_exact_test_use_and_misus

e.htm

Durmaz, A. A., Karaca, E., Demkow, U., Toruner, G., Schoumans, J., &
Cogulu, O. (2015). Evolution of genetic techniques: past, present, and
beyond. BioMed research international, 2015, 461524.
https://doi.org/10.1155/2015/461524

Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and
apoptosis in cancer. Nature, 411(6835), 342-348.

Fiori, M. E., Di Franco, S., Villanova, L., Bianca, P., Stassi, G., & De Mairia,

R. (2019). Cancer-associated fibroblasts as abettors of tumor progression

171


https://doi.org/10.1038/s41374-020-0428-1
https://influentialpoints.com/Training/Fishers_exact_test_use_and_misuse.htm
https://influentialpoints.com/Training/Fishers_exact_test_use_and_misuse.htm
https://doi.org/10.1155/2015/461524

at the crossroads of EMT and therapy resistance. Molecular Cancer, 18, 1-
16.

Fisher, R. A. (1922). On the interpretation of x2 from contingency tables,
and the calculation of P. Journal of the Royal Statistical Society, 85(1),
87-94.

Frost, H. R. (2021). Analyzing cancer gene expression data through the
lens of normal tissue-specificity. PLoS Computational Biology, 17(6),
€1009085.

Fgleide, L. & Mittet, A. (2023). Cell Type Origin of Differentially Expressed

Genes (specialization project). Unpublished.

Fgleide, L. (2024). CellTypeGenomics: Source Code and Documentation
[Software and documentation]. Retrieved from

https://github.com/Zyron/CellTypeGenomics

Gasperskaja, E. & Kucinskas, V. (2017). The most common technologies
and tools for functional genome analysis. Acta medica Lituanica, 24(1), 1-
11. https://doi.org/10.6001/actamedica.v24i1.3457

Gelfand, J. M., Neimann, A. L., Shin, D. B., Wang, X., Margolis, D. J., &
Troxel, A. B. (2006). Risk of myocardial infarction in patients with
psoriasis. Jama, 296(14), 1735-1741.

Gene Ontology Consortium. (2021). The Gene Ontology resource:
enriching a GOId mine. Nucleic Acids Research, 49(D1), D325-D334.
https://doi.org/10.1093/nar/gkaal1113

Govindan, R., Ding, L., Griffith, M., Subramanian, J., Dees, N. D., Kanchi,
K. L., ... & Wilson, R. K. (2012). Genomic landscape of non-small cell lung

cancer in smokers and never-smokers. Cell, 150(6), 1121-1134.

Goel, S., DeCristo, M. J., McAllister, S. S., & Zhao, J. J. (2018). CDK4/6
inhibition in cancer: beyond cell cycle arrest. Trends in cell biology,
28(11), 911-925.

172


https://github.com/Zyron/CellTypeGenomics
https://doi.org/10.6001/actamedica.v24i1.3457
https://doi.org/10.1093/nar/gkaa1113

Grummt, I. (2003). Life on a planet of its own: regulation of RNA
polymerase I transcription in the nucleolus. Genes & development,
17(14), 1691-1702.

Gubanova, N. V., Orlova, N.G., Dergilev A. I., Oparina, N. Y. & Orlov, Y.
0. (2021). Glioblastoma gene network reconstruction and ontology
analysis by online bioinformatics tools. Journal of Integrative
Bioinformatics. https://doi.org/10.1515/jib-2021-0031

Guinee, D. G. (2018). Lymphoid Lesions of the Lung. In D. S. Zander & C.
F. Farver (Eds.), Pulmonary Pathology (Second Edition) (pp. 445-485.e1).
Elsevier. https://doi.org/10.1016/B978-0-323-39308-9.00022-4

Gupta, R. (2023). Accuracy, Precision, Recall, F-1 Score, Confusion Matrix,
and AUC-ROC. Medium. https://medium.com/@riteshgupta.ai/accuracy-

precision-recall-f-1-score-confusion-matrix-and-auc-roc-1471e9269b7d

Haldar, S., Jadhav, S. R., Gulati, V., Beale, D. ]., Balkrishna, A.,
Varshney, A., ... & Shah, R. M. (2023). Unravelling the gut-lung axis:
insights into microbiome interactions and Traditional Indian Medicine's
perspective on optimal health. FEMS Microbiology Ecology, 99(10),
fiad103.

Hanahan, D. & Weinberg, R.A. (2000). The Hallmarks of Cancer. Cell,
100(1), 57-70. https://doi.org/10.1016/50092-8674(00)81683-9

Hanahan, D. & Weinberg, R.A. (2011). Hallmarks of Cancer: The Next
Generation. Cell, 144(5), 646-674.
https://doi.org/10.1016/j.cell.2011.02.013

Harbeck, N., Sotlar, K., Wuerstlein, R., & Doisneau-Sixou, S. (2014).
Molecular and protein markers for clinical decision making in breast

cancer: today and tomorrow. Cancer treatment reviews, 40(3), 434-444.

Hardin, J. & Bertoni, G. (2018). Becker’s World of the Cell. Pearson.

173


https://doi.org/10.1515/jib-2021-0031
https://medium.com/@riteshgupta.ai/accuracy-precision-recall-f-1-score-confusion-matrix-and-auc-roc-1471e9269b7d
https://medium.com/@riteshgupta.ai/accuracy-precision-recall-f-1-score-confusion-matrix-and-auc-roc-1471e9269b7d
https://doi.org/10.1016/S0092-8674(00)81683-9
https://doi.org/10.1016/j.cell.2011.02.013

Harjunpdaa, H., Llort Asens, M., Guenther, C., & Fagerholm, S. C. (2019).
Cell adhesion molecules and their roles and regulation in the immune and

tumor microenvironment. Frontiers in immunology, 10, 448153.

Hartwell, L. H., & Kastan, M. B. (1994). Cell cycle control and cancer.
Science, 266(5192), 1821-1828.

Hato, L., Vizcay, A., Eguren, 1., Pérez-Gracia, J. L., Rodriguez, J., Gallego
Pérez-Larraya, J., ... & Santisteban, M. (2024). Dendritic Cells in Cancer

Immunology and Immunotherapy. Cancers, 16(5), 981.

Hecht, S. S. (2003). Tobacco carcinogens, their biomarkers and tobacco-

induced cancer. Nature Reviews Cancer, 3(10), 733-744.

Herbst, R. S., Heymach, J. V., & Lippman, S. M. (2008). Lung cancer. New
England Journal of Medicine, 359(13), 1367-1380.

Heryanto, Y. D., & Imoto, S. (2023). Identifying key regulators of
keratinization in lung squamous cell cancer using integrated TCGA
analysis. Cancers, 15(7), 2066.

Hodzic, E. (2016). Single-cell analysis: Advances and future perspectives.
Bosnian journal of basic medical sciences, 16(4), 313-314.
https://doi.org/10.17305/bjbms.2016.1371

Hoffman, J. I. (2015). Hypergeometric distribution. Biostatistics for
medical and biomedical practitioners. Academic Press, Cambridge, MA,
179-182.

https://doi.org/10.1016/B978-0-12-802387-7.00013-5

Horio, Y., Kuroda, H., Masago, K., Matsushita, H., Sasaki, E., & Fujiwara,
Y. (2024). Current diagnosis and treatment of salivary gland-type tumors

of the lung. Japanese Journal of Clinical Oncology, 54(3), 229-247.

Hu, S., Meng, K., Wang, T., Qu, R., Wang, B., Xi, Y., ... & Li, L. (2024).
Lung cancer cell-intrinsic IL-15 promotes cell migration and sensitizes
murine lung tumors to anti-PD-L1 therapy. Biomarker Research, 12(1),
40.

174


https://doi.org/10.17305/bjbms.2016.1371
https://doi.org/10.1016/B978-0-12-802387-7.00013-5

Human Protein Atlas. (2023). Human Protein Atlas version 23.0: Data in
Tab-Separated Format [Data file]. Retrieved from

https://www.proteinatlas.org/download/proteinatlas.tsv.zip

Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., ...
& D’Eustachio, P. (2020). The Reactome pathway knowledgebase. Nucleic
Acids Research, 48(D1), D498-D503.
https://doi.org/10.1093/nar/gkz1031

Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell,
128(4), 683-692.

Joshi, R. S., Kanugula, S. S., Sudhir, S., Pereira, M. P., Jain, S., & Aghi,
M. K. (2021). The role of cancer-associated fibroblasts in tumor

progression. Cancers, 13(6), 1399.

Karlsson, M., Zhang, C., Méar, L., Zhong, W., Digre, A., Katona, B., ... &
Lindskog, C. (2021). A single-cell type transcriptomics map of human
tissues. Science advances, 7(31), eabh2169.
https://doi.org/10.1126/sciadv.abh2169

Lopez-Rodriguez, E., Gay-Jordi, G., Mucci, A., Lachmann, N., & Serrano-
Mollar, A. (2017). Lung surfactant metabolism: early in life, early in
disease and target in cell therapy. Cell and Tissue Research, 367, 721-
735.

Kastan, M. B., & Bartek, J. (2004). Cell-cycle checkpoints and cancer.
Nature, 432(7015), 316-323.

Klopfenstein, D. V., Zhang, L., Pedersen, B. S., Ramirez, F., Warwick
Vesztrocy, A., Naldi, A., ... & Tang, H. (2018). GOATOOLS: A Python
library for Gene Ontology analyses. Scientific reports, 8(1), 1-17.

Kolberg, L., Raudvere, U., Kuzmin, I., Adler, P., Vilo, J., & Peterson, H.
(2023). g: Profiler—interoperable web service for functional enrichment
analysis and gene identifier mapping (2023 update). Nucleic acids
research, 51(W1), W207-W212.

175


https://www.proteinatlas.org/download/proteinatlas.tsv.zip
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1126/sciadv.abh2169

Kolhe, R., Hunter, M., Liu, S., Jadeja, R. N., Pundkar, C., Mondal, A. K., ...
& Fulzele, S. (2017). Gender-specific differential expression of exosomal
miRNA in synovial fluid of patients with osteoarthritis. Scientific reports,
7(1), 2029.

Krueger, J. G., & Bowcock, A. (2005). Psoriasis pathophysiology: current
concepts of pathogenesis. Annals of the rheumatic diseases, 64(suppl 2),
ii30-ii36.

Lardone, M. C., Parodi, D. A., Valdevenito, R., Ebensperger, M., Piottante,
A., Madariaga, M., ... & Castro, A. (2007). Quantification of DDX3Y,
RBMY1, DAZ and TSPY mRNAs in testes of patients with severe
impairment of spermatogenesis. Molecular human reproduction, 13(10),
705-712.

Law, C. W., Chen, Y., Shi, W., & Smyth, G. K. (2014). voom: precision
weights unlock linear model analysis tools for RNA-seq read counts.
Genome Biology, 15(2), R29.

Leone, P., Malerba, E., Susca, N., Favoino, E., Perosa, F., Brunori, G., ... &
Racanelli, V. (2024). Endothelial cells in tumor microenvironment: insights

and perspectives. Frontiers in Immunology, 15, 1367875.

Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division.
Cell, 88(3), 323-331.

Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in

genetics and genomics. Nature Reviews Genetics, 16(6), 321-332.

Liu, L. F., Shen, W. J., Ueno, M., Patel, S., & Kraemer, F. B. (2011).
Characterization of age-related gene expression profiling in bone marrow

and epididymal adipocytes. BMC genomics, 12, 1-18.

Long, T., Liu, Z., Zhou, X., Yu, S., Tian, H., & Bao, Y. (2019).
Identification of differentially expressed genes and enriched pathways in
lung cancer using bioinformatics analysis. Molecular medicine reports,
19(3), 2029-2040.

176



Lowes, M. A., Sudrez-Farifas, M., & Krueger, J. G. (2014). Immunology of
psoriasis. Annual Review of Immunology, 32, 227-255.
https://doi.org/10.1146/annurev-immunol-032713-120225

Mao, Y., Huang, P., Wang, Y., Wang, M., Li, M. D., & Yang, Z. (2021).
Genome-wide methylation and expression analyses reveal the epigenetic
landscape of immune-related diseases for tobacco smoking. Clinical

Epigenetics, 13, 1-14.

Marzell, T. (2019). Machine Learning Performance Indicators. RocketLoop.

https://rocketloop.de/en/blog/machine-learning-performance-indicators/

Min, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics.
Briefings in Bioinformatics, 18(5), 851-8609.

Minna, J. D., Roth, J. A., Gazdar, A. F. (2002). Focus on lung cancer.
Cancer Cell. https://doi.org/10.1016/S1535-6108(02)00027-2

Morrisey, E. E., & Rustgi, A. K. (2018). The lung and esophagus:
developmental and regenerative overlap. Trends in cell biology, 28(9),
738-748.

Mrozik, K. M., Blaschuk, O. W., Cheong, C. M., Zannettino, A. C. W., &
Vandyke, K. (2018). N-cadherin in cancer metastasis, its emerging role in
haematological malignancies and potential as a therapeutic target in
cancer. BMC cancer, 18(1), 939.

Musgrove, E. A., & Sutherland, R. L. (2009). Biological determinants of
endocrine resistance in breast cancer. Nature Reviews Cancer, 9(9), 631-
643.

Myers, G. ]J., Sandler, C., & Badgett, T. (2011). The Art of Software
Testing. Wiley.

Nakayama, J., & Yamamoto, Y. (2023). Cancer-prone phenotypes and
gene expression heterogeneity at single-cell resolution in cigarette-

smoking lungs. Cancer Research Communications, 3(11), 2280-2291.

177


https://doi.org/10.1146/annurev-immunol-032713-120225
https://rocketloop.de/en/blog/machine-learning-performance-indicators/
https://doi.org/10.1016/S1535-6108(02)00027-2

National Cancer Institute (NCI). (2021). What Is Cancer?

https://www.cancer.gov/about-cancer/understanding/what-is-cancer

National Institute of Standards and Technology (NIST). (n.d.).
Kolmogorov-Smirnov Goodness-of-Fit Test.
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

Nature. (n.d.) Microarray.

https://www.nature.com/scitable/definition/microarray-202/

Nelson, D. L., & Cox, M. M. (2021). Lehninger principles of biochemistry.

Macmillan Learning.

Nestle, F. O., Kaplan, D. H., & Barker, J. (2009). Psoriasis. New England
Journal of Medicine, 361(5), 496-509.
https://doi.org/10.1056/NEJMra0804595

Netti, G. S., Franzin, R., Stasi, A., Spadaccino, F., Dello Strologo, A.,
Infante, B., ... & Stallone, G. (2021). Role of complement in regulating

inflammation processes in renal and prostate cancers. Cells, 10(9), 2426.

Newman, A. M., Steen, C. B, Liu, C. L., Gentles, A. J., Chaudhuri, A. A.,
Scherer, F., ... & Alizadeh, A. A. (2019). Determining cell type abundance
and expression from bulk tissues with digital cytometry. Nature
biotechnology, 37(7), 773-782.
https://doi.org/10.1038/s41587-019-0114-2

Orywal, K., Jelski, W., Koztowski, M. D., & Mroczko, B. (2020). Activity of
alcohol dehydrogenase and aldehyde dehydrogenase in lung cancer cells.
Anticancer Research, 40(7), 3857-3863.

Page, D. C., Mosher, R., Simpson, E. M., Fisher, E. M., Mardon, G.,
Pollack, J., ... & Brown, L. G. (1987). The sex-determining region of the

human Y chromosome encodes a finger protein. Cell, 51(6), 1091-1104.

178


https://www.cancer.gov/about-cancer/understanding/what-is-cancer
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
https://www.nature.com/scitable/definition/microarray-202/
https://doi.org/10.1056/NEJMra0804595
https://doi.org/10.1038/s41587-019-0114-2

Pang, B., Wu, N., Guan, R., Pang, L., Li, X., Li, S., ... &1Jin, Y. (2017).
Overexpression of RCC2 enhances cell motility and promotes tumor
metastasis in lung adenocarcinoma by inducing epithelial-mesenchymal
transition. Clinical Cancer Research, 23(18), 5598-5610.

Pasquini, G., Rojo Arias, J. E., Schafer, P., & Busskamp, V. (2020).
Automated methods for cell type annotation on scRNA-seq data.
Computational and Structural Biotechnology Journal, 19, 961-969.
https://doi.org/10.1016/j.csbj.2021.01.015

Pamarthy, S., Kulshrestha, A., Katara, G. K., & Beaman, K. D. (2018). The
curious case of vacuolar ATPase: regulation of signaling pathways.

Molecular Cancer, 17, 1-9.

Neophytou, C. M., Panagi, M., Stylianopoulos, T., & Papageorgis, P.
(2021). The role of tumor microenvironment in cancer metastasis:
Molecular mechanisms and therapeutic opportunities. Cancers, 13(9),
2053.

Patton, M. Q. (2014). Qualitative Research & Evaluation Methods:

Integrating Theory and Practice. Sage publications.

Paw, M., Wnuk, D., Jakieta, B., Bochenek, G., Stadek, K., Madeja, Z., &
Michalik, M. (2021). Responsiveness of human bronchial fibroblasts and
epithelial cells from asthmatic and non-asthmatic donors to the
transforming growth factor- 1 in epithelial-mesenchymal trophic unit
model. BMC Molecular and Cell Biology, 22, 1-14.

Peto, R., Darby, S., Deo, H., Silcocks, P., Whitley, E., & Doll, R. (2000).
Smoking, smoking cessation, and lung cancer in the UK since 1950:
combination of national statistics with two case-control studies. Bmj,
321(7257), 323-329.

Poirier, M. C. (2004). Chemical-induced DNA damage and human cancer
risk. Nature Reviews Cancer, 4(8), 630-637.

179


https://doi.org/10.1016/j.csbj.2021.01.015

Pomyen, Y., Segura, M., Ebbels, T. M., & Keun, H. C. (2015). Over-
representation of correlation analysis (ORCA): a method for identifying
associations between variable sets. Bioinformatics, 31(1), 102-108.
https://doi.org/10.1093/bioinformatics/btu589

Pontén, F., Jirstrom, K., & Uhlén, M. (2008). The Human Protein Atlas—a
tool for pathology. Pathological Society, pp. 387-393.

Prado, F., & Maya, D. (2017). Regulation of replication fork advance and

stability by nucleosome assembly. Genes, 8(2), 49.

Pratt, M. M., John, K., MacLean, A. B., Afework, S., Phillips, D. H., &
Poirier, M. C. (2011). Polycyclic aromatic hydrocarbon (PAH) exposure and
DNA adduct semi-quantitation in archived human tissues. International

Jjournal of environmental research and public health, 8(7), 2675-2691.

Pylayeva-Gupta, Y., Grabocka, E., & Bar-Sagi, D. (2011). RAS oncogenes:

weaving a tumorigenic web. Nature Reviews Cancer, 11(11), 761-774.

Qiu, Y., Wang, J. & R., K. (2021). Identification of cell-type-specific
marker genes from co-expression patterns in tissue samples.
Bioinformatics, 37(19), 3228-3234.
https://doi.org/10.1093/bioinformatics/btab257

Ramamonjisoa, N., & Ackerstaff, E. (2017). Characterization of the tumor
microenvironment and tumor-stroma interaction by non-invasive

preclinical imaging. Frontiers in Oncology, 7, 3.

Rehman, M., Saeed, M. S., Fan, X., Salam, A., Munir, R., Yasin, M. U,, ...
& Gan, Y. (2023). The multifaceted role of jasmonic acid in plant stress
mitigation: An overview. Plants, 12(23), 3982.

Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010).
Oxidative stress, inflammation, and cancer: how are they linked?. Free
radical biology and medicine, 49(11), 1603-1616.

180


https://doi.org/10.1093/bioinformatics/btu589
https://doi.org/10.1093/bioinformatics/btab257

Risso, D. S., Kozlitina, J., Sainz, E., Gutierrez, J., Wooding, S., Getachew,
B., ... & Drayna, D. (2016). Genetic variation in the TAS2R38 bitter taste
receptor and smoking behaviors. PLoS One, 11(10), e0164157.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., & Smyth,
G.K. (2015). limma powers differential expression analyses for RNA

Sequencing and microarray studies. Nucleic Acids Research, 43(7), e47.

Schiller, J. H., Harrington, D., Belani, C. P., Langer, C., Sandler, A., Krook,
J., ... & Johnson, D. H. (2002). Comparison of four chemotherapy
regimens for advanced non-small-cell lung cancer. New England Journal of
Medicine, 346(2), 92-98.

Schuurman, N., Leszczynski, A. (2008). Ontologies for Bioinformatics.
Bioinformatics and Biology Insights. https://doi.org/10.4137/BBI1.S451

Sharma, P., Alsharif, S., Fallatah, A., & Chung, B. M. (2019). Intermediate
filaments as effectors of cancer development and metastasis: a focus on

keratins, vimentin, and nestin. Cells, 8(5), 497.

Sherr, C. J., & Roberts, J. M. (1999). CDK inhibitors: positive and negative
regulators of G1-phase progression. Genes & development, 13(12), 1501-
1512.

Shevchenko, J. A., Nazarov, K. V., Alshevskaya, A. A., & Sennikov, S. V.
(2023). Erythroid Cells as Full Participants in the Tumor
Microenvironment. International Journal of Molecular Sciences, 24(20),
15141.

Shin, H., Sheu, B., Joseph, M., & Markey, M. K. (2008). Guilt-by-
association feature selection: Identifying biomarkers from proteomic
profiles. Biomedical Informatics, 41(2), 124-136.
https://doi.org/10.1016/j.jbi.2007.04.003

Skogholt, A.H. (2021). Identifying robust blood-based messenger RNA
(mRNA) markers for potential detection of lung cancer (Unpublished

doctoral dissertation). Norwegian University of Science and Technology.

181


https://doi.org/10.4137/BBI.S451
https://doi.org/10.1016/j.jbi.2007.04.003

Smith, D. D., Seetrom, P., Sngve, O., Lundberg, C., Rivas, G. E., Glackin,
C., & Larson, G. P. (2008). Meta-analysis of breast cancer microarray
studies in conjunction with conserved cis-elements suggest patterns for
coordinate regulation. BMC Bioinformatics, 9, 1-15.
https://doi.org/10.1186/1471-2105-9-63

Smyth, G. K. (2004). Linear models and empirical bayes methods for
assessing differential expression in microarray experiments. Statistical

Applications in Genetics and Molecular Biology, 3(1).

Sokolowski, D. J., Faykoo-Martinez, M., Erdman, L., Hou, H., Chan, C.,,
Zhu, H., ... & Wilson, M. D. (2021). Single-cell mapper (scMappR): using
scRNA-seq to infer the cell-type specificities of differentially expressed

genes. NAR genomics and bioinformatics, 3(1), lqgab011.

Solvin, A. @., Chawla, K., Jenssen, M., Olsen, Lene C., Furberg, AS., ... &
Lgset, M. (2023). Meta-analysis of RNA-seq data from 534 skin samples
shows substantial IL-17 effects in non-lesional psoriatic skin. medRxiv.
Preprint.
https://www.medrxiv.org/content/10.1101/2023.11.03.23298021v1

Song, Q., Chen, P., & Liu, X. M. (2021). The role of cigarette smoke-
induced pulmonary vascular endothelial cell apoptosis in COPD.

Respiratory Research, 22(1), 39.

Spiro, S. G. & Silvestri, G. A. (2005). One Hundred Years of Lung Cancer.

American Journal of Respiratory and Critical Care Medicine. 172(5).

Stark, R., Grzelak, M., & Hadfield, J. (2019). RNA Sequencing: the
teenage years. Nature Reviews Genetics, 20(11), 631-656.

Stevens, R., Goble, C & Bechhofer, S. (2000). Ontology-based knowledge
representation for bioinformatics. Briefings in Bioinformatics, 1(4), 398-
414. https://academic.oup.com/bib/article/1/4/398/2530008

182


https://doi.org/10.1186/1471-2105-9-63
https://www.medrxiv.org/content/10.1101/2023.11.03.23298021v1
https://academic.oup.com/bib/article/1/4/398/2530008

Stipp, M. C., & Acco, A. (2021). Involvement of cytochrome P450
enzymes in inflammation and cancer: a review. Cancer chemotherapy and
pharmacology, 87(3), 295-3009.

Subramanian, A., et al. (2005). Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proceedings of the National Academy of Sciences, 102(43),
15545-15550.

Szumilas, M. (2010). Explaining odds ratios. Journal of the Canadian
Academy of Child and Adolescent Psychiatry = Journal de I'’Academie
canadienne de psychiatrie de I'enfant et de I'adolescent, 19(3), 227-229.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938757/

Takeshita, J., Grewal, S., Langan, S. M., Mehta, N. N., Ogdie, A., Van
Voorhees, A. S., & Gelfand, J. M. (2017). Psoriasis and comorbid diseases:
epidemiology. Journal of the American Academy of Dermatology, 76(3),
377-390.

Tata, P. R., & Rajagopal, J. (2017). Plasticity in the lung: making and
breaking cell identity. Development, 144(5), 755-766.

The Cancer Genome Atlas Program. (n.d.) The Cancer Genome Atlas
Program (TCGA). https://www.cancer.gov/ccg/research/genome-

sequencing/tcga

The Cancer Genome Atlas Program. (2024). Genomic Data Commons Data

Portal. https://www.portal.gdc.cancer.gov/

Thul, P. J., & Lindskog, C. (2018). The Human Protein Atlas: A spatial map
of the human proteome. Protein Science, 27(1), 233-244.

Uhlén, M., Fagerberg, L., Hallstrom, B. M., et al. (2015). Tissue-based
map of the human proteome. Science, 347(6220), 12604109.

U.S. Public Health Service. (1964). Surgeon General’s advisory committee
on smoking and health. Washington, DC: U.S. Government Printing Office.
Publication No. 1103.

183


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938757/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.portal.gdc.cancer.gov/

Valavanidis, A., Vlachogianni, T., Fiotakis, K., & Loridas, S. (2013).
Pulmonary oxidative stress, inflammation and cancer: respirable
particulate matter, fibrous dusts and ozone as major causes of lung
carcinogenesis through reactive oxygen species mechanisms.
International Journal of Environmental Research and Public Health, 10(9),
3886-3907.

Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual.

CreateSpace.

Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz Jr, L.
A., & Kinzler, K. W. (2013). Cancer Genome Landscapes. Science,
339(6127), 1546-1558.

Wang, Z., et al. (2009). RNA-Seq: a revolutionary tool for transcriptomics.
Nature Reviews Genetics, 10(1), 57-63.

Watkins, J.C. (n.d.). Hypothesis Testing - Multiple Testing. The University

of Arizona. https://www.math.arizona.edu/~jwatkins/H6_multiple.pdf

Weinberg, R. A. (2013). The biology of cancer 2nd edition. Garland
Science. Cambridge, MA, 658-691.

Whitsett, J. A., Wert, S. E., & Weaver, T. E. (2015). Diseases of
pulmonary surfactant homeostasis. Annual Review of Pathology:
Mechanisms of Disease, 10, 371-393.

Wilson, A., Shehadeh, L. A., Yu, H., & Webster, K. A. (2010). Age-related
molecular genetic changes of murine bone marrow mesenchymal stem

cells. BMC genomics, 11, 1-14.

Wikimedia Commons. (2016). Figure 10 02 01.jpg.
https://www.commons.wikimedia.org/wiki/File:Figure_10_02_01.jpg

Wolfe, C. J., Kohane, I. S. & Butte, A. K. (2005). Systematic survey
reveals general applicability of guilt-by-association within gene
coexpression networks. BMC Bioinformatics, 6(227).
https://www.doi.org/10.1186/1471-2105-6-227

184


https://www.math.arizona.edu/~jwatkins/H6_multiple.pdf
https://www.commons.wikimedia.org/wiki/File:Figure_10_02_01.jpg
https://www.doi.org/10.1186/1471-2105-6-227

World Cancer Research Fund International (WCRF). (2022). Worldwide

cancer data. https://www.wcrf.org/cancer-trends/worldwide-cancer-data/

Xu, J., Wei, Q., & He, Z. (2020). Insight into the function of RIPK4 in
keratinocyte differentiation and carcinogenesis. Frontiers in oncology, 10,
1562.

Yang, T., Xiao, H., Liu, X., Wang, Z., Zhang, Q., Wei, N., & Guo, X.
(2021). Vascular normalization: a new window opened for cancer

therapies. Frontiers in Oncology, 11, 719836.

Yates, A. D., Achuthan, P., Akanni, W., Allen, J., Allen, J., Alvarez-Jarreta,
J., ... & Flicek, P. (2020). Ensembl 2020. Nucleic acids research, 48(D1),
D682-D688.

Zani, I. A., Stephen, S. L., Mughal, N. A., Russell, D., Homer-
Vanniasinkam, S., Wheatcroft, S. B., & Ponnambalam, S. (2015).
Scavenger receptor structure and function in health and disease. Cells 4:
178-201.

Zhou, B., Stueve, T. R., Mihalakakos, E. A., Miao, L., Mullen, D., Wang, Y.,
... & Marconett, C. N. (2021). Comprehensive epigenomic profiling of
human alveolar epithelial differentiation identifies key epigenetic states
and transcription factor co-regulatory networks for maintenance of distal
lung identity. BMC Genomics, 22, 1-25.

Zhou, Y., Xu, B., Zhou, Y., Liu, J., Zheng, X., Liu, Y., ... & Jiang, J. (2021).
Identification of key genes with differential correlations in lung

adenocarcinoma. Frontiers in Cell and Developmental Biology, 9, 675438.

Zhang, E., Ding, C., Li, S., Zhou, X., Aikemu, B., Fan, X., ... & Yang, X.
(2023). Roles and mechanisms of tumour-infiltrating B cells in human

cancer: a new force in immunotherapy. Biomarker Research, 11(1), 28.

Zhang, L., Luo, W., Liu, J., Xu, M., Peng, Q., Zou, W., ... & Fu, Z. (2022).
Modeling lung diseases using reversibly immortalized mouse pulmonary
alveolar type 2 cells (imPAC2). Cell & Bioscience, 12(1), 159.

185


https://www.wcrf.org/cancer-trends/worldwide-cancer-data/

Zhang, R., Liu, Q., Li, T., Liao, Q., & Zhao, Y. (2019). Role of the
complement system in the tumor microenvironment. Cancer Cell
International, 19(1), 300.

Zhang, Y., Zhang, Q., Zhang, Y., & Han, J. (2023). The role of histone
modification in DNA replication-coupled Nucleosome Assembly and

Cancer. International Journal of Molecular Sciences, 24(5), 4939.

186



A. Appendices

This chapter provides a compilation of supplementary materials that
enhance the insights discussed throughout this thesis. It includes detailed
tables and additional data that complement the visual representations and

analyses within the main text.

Appendix A.1 provides a table summarizing cell type ontologies from
qualitative hECA, qualitative HPA, and numerical HPA data, focusing on
shared cell types. It details adjusted p-values and odds ratios for various
cell types under different conditions, such as age, sex-specific

interactions, and tumor versus normal tissue comparisons.

Appendix A.2 presents the cell types of differentially expressed genes for
the full dataset. It offers a detailed view of cellular changes associated

with lung cancer.

Appendix A.3 delves into the impact of smoking on gene expression,
presenting data from the smoking-related dataset. It highlights how
smoking alters gene expression across different cell types, providing
insights into the molecular adjustments that occur in lung cancer due to

smoking.

Appendix A.4 lists the top 20 Reactome pathways derived from the full
dataset, illustrating the significant biological processes and pathways that
are perturbed in lung cancer. This section provides a deeper

understanding of the pathway dynamics involved in the disease.

Appendix A.5 outlines the top 20 Reactome pathways from the smoking-
related dataset, emphasizing the pathways that are predominantly

influenced by smoking. This appendix helps to pinpoint specific biological
processes that smoking impacts, aiding in the understanding of its role in

lung cancer progression.
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Appendix A.6 through A.11 provide detailed Gene Ontology (GO) analyses

for different aspects of lung cancer:

Appendix A.6 details the biological processes affected in lung cancer

as revealed by Gene Ontology (GO) analysis of the full dataset.

Appendix A.7 outlines the biological processes influenced by

smoking, based on GO analysis of the smoking dataset.

Appendix A.8 identifies the top 20 cellular components affected in

lung cancer, providing insights from GO analysis of the full dataset.

Appendix A.9 specifies the top 20 cellular components influenced by

smoking, as detailed in the GO analysis of the smoking dataset.

Appendix A.10 displays the molecular functions affected in lung

cancer, highlighting findings from GO analysis of the full dataset.

Appendix A.11 reports on the molecular functions influenced by

smoking, as uncovered in the GO analysis of the smoking dataset.

Each appendix is designed to extend the data representation and analysis
presented in the thesis, providing a richer and more comprehensive

understanding of the genetic and molecular landscape of lung cancer.
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A.1 Cell Type Ontologies (hECA, Qualitative HPA and

Numerical HPA)

Comparison

Age hECA up
TumorVsNormal hECA up
TissueXSex hECA down
TissueXSex HPA down
TumorVsNormal hECA down
TumorVsNormal HPA down
TumorVsNormal hECA down
TumorVsNormal HPA down
TumorVsNormal hECA down
TumorVsNormal hECA down
TumorVsNormal hECA down
TumorVsNormal hECA up
TumorVsNormal hECA down
TumorVsNormal hECA down
TumorVsNormal HPA up
Num Age up

Num TissueXSex down

Num TissueXSex down

Num TumorVsNormal up
Num TumorVsNormal up
Num TumorVsNormal up
Num TumorVsNormal down
Num TumorVsNormal down
Num TumorVsNormal down
Num TumorVsNormal down
Num TumorVsNormal down
Num TumorVsNormal down
Num TumorVsNormal down
Num TumorVsNormal down

Cell Type

b-cells

b-cells

alveolar cells type 2
alveolar cells type 2
alveolar cells type 2
alveolar cells type 2
endothelial cells
endothelial cells
macrophages
smooth muscle cells
fibroblasts
fibroblasts

ciliated cells
alveolar cells type 1
basal keratinocytes
b-cells

alveolar cells type 2
alveolar cells type 1
b-cells

basal keratinocytes
fibroblasts
endothelial cells
alveolar cells type 1
alveolar cells type 2
macrophages
smooth muscle cells
fibroblasts

ciliated cells

b-cells
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Adj. p-value
6.71e-03
1.63e-02
2.44e-04
4.02e-02
2.17e-06
1.63e-02
2.89e-15
4.73e-03
1.49e-07
3.64e-02
4.25e-03
6.98e-04
4.25e-03
2.17e-06
8.99e-04
1.30e-08
1.75e-04
4.04e-02
3.01e-50
1.50e-30
1.90e-03
2.79e-120
1.75e-63
5.25e-57
5.05e-56
5.25e-55
1.79e-44
3.96e-23
6.32e-04

Odds Ratio
172.18
10.08
1919.33
2519.88
74.88
inf
22.61
inf
14.59
5.1
5.26
11.79
15.58
74.88
inf
42.54
inf
119.08
6.97
9.02
2.17
17.14
9.24
10.89
6.24
7.51
6.09
3.49
1.55



A.2 Cell Types of Differentially Expressed Genes for the Full

Dataset

Comparison

Age down

Age down

Age up

Age up

Age up

Age up

Age up

Age up

Age up

Age up

Age up

Age up

Age up

TissueXSex down
TissueXSex down
TissueXSex up
TissueXSex up
TissueXSex up
TissueXSex up
TissueXSex up
TissueXSex up
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down

Cell Types

Plasma cells

Erythroid cells

Basal keratinocytes
Suprabasal keratinocytes
Basal squamous epithelial cells
Squamous epithelial cells
Basal respiratory cells
naive B-cell

Plasma cells

memory B-cell

Salivary duct cells
B-cells

Fibroblasts

Alveolar cells type 2
Alveolar cells type 1
Basal keratinocytes
Squamous epithelial cells
Suprabasal keratinocytes
Basal squamous epithelial cells
Basal respiratory cells
Club cells

Adipocytes

Endothelial cells
monocytes

Macrophages

Kupffer cells

Alveolar cells type 2
Alveolar cells type 1
granulocytes

Lymphatic endothelial cells
Microglial cells

Smooth muscle cells
Hofbauer cells

dendritic cells

Fibroblasts

intermediate monocyte
neutrophil

non-classical monocyte
Langerhans cells
classical monocyte
NK-cells
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Adj. p-value 0Odds Ratio

1.51e-10
9.28e-05
2.42e-17
2.34e-12
4.67e-07
1.17e-06
1.92e-06
7.16e-04
2.29e-03
5.09e-03
6.54e-03
6.54e-03
1.73e-02
2.30e-19
1.71e-08
7.33e-26
2.03e-23
1.72e-21
2.63e-15
7.41e-13
1.38e-06
1.31e-111
4.10e-106
9.47e-90
2.07e-80
3.32e-63
2.40e-62
8.20e-61
1.06e-60
2.47e-56
1.23e-46
1.38e-42
2.75e-41
7.02e-41
3.30e-36
9.92e-32
4.08e-30
9.50e-30
1.99e-29
4.34e-29
1.57e-28

140.12
38.31
76.37
34.42
24.01
20.41
23.95
11.34
8.85
9.31
20.34
6.72
8.6
185.95
44.07
161.9
111.87
84.21
57.88
50.9
35.03
11.04
14.3
4.59
7.95
6.94
11.49
8.55
3.25
7.92
4.09
5.96
4.76
3.27
5.1
4.84
2.92
4.22
3.61
4.61
3.21



TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

Leydig cells
myeloid DC
T-cells
Peritubular cells
Schwann cells
eosinophil
Mesothelial cells

Oligodendrocyte precursor cells

Astrocytes
basophil

Ciliated cells
Oligodendrocytes
Cardiomyocytes
plasmacytoid DC

Glandular and luminal cells

Excitatory neurons
Sertoli cells

Skeletal myocytes

Basal prostatic cells
Inhibitory neurons
Ovarian stromal cells
Endometrial stromal cells
B-cells

MAIT T-cell

Muller glia cells
Hepatocytes

NK-cell

gdT-cell

Ionocytes

Secretory cells

naive CD4 T-cell

Mucus glandular cells
Cholangiocytes

Prostatic glandular cells
naive CD8 T-cell
Extravillous trophoblasts
Plasma cells

Suprabasal keratinocytes
Erythroid cells

Basal keratinocytes
memory B-cell
Squamous epithelial cells
naive B-cell
Undifferentiated cells
Basal respiratory cells
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4.51e-27
4.33e-26
7.56e-21
8.71e-18
4.99e-17
1.64e-15
3.15e-14
3.88e-14
1.78e-13
2.26e-13
9.69e-13
1.03e-10
1.86e-09
2.09e-09
3.40e-07
9.09e-07
1.48e-06
2.27e-06
5.33e-06
8.91e-06
1.45e-05
2.29e-05
3.24e-05
3.97e-05
3.41e-04
6.09e-04
1.01e-03
4.76e-03
5.03e-03
8.86e-03
9.05e-03
9.05e-03
9.74e-03
2.45e-02
2.71e-02
7.14e-76
1.10e-65
5.52e-49
6.07e-47
1.03e-46
1.84e-37
4.13e-35
2.95e-33
1.12e-32
2.34e-32

4.73
4.32
2.38
3.42
3.45
2.72
3.74
1.9

2.17
2.56
1.75
2.06
2.22
2.34
1.48
2.36
1.98
2.62
1.44
2.36
2.23
1.65
2.26
1.77
1.53
1.85
1.86
1.77
2.03
1.68

1.82
1.61
1.59
8.66
8.05
7.15
7.95
10.35
6.32
6.62
5.72
9.36
7.69



TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up

Cytotrophoblasts
B-cells
Spermatogonia

Basal squamous epithelial cells

Club cells

Ionocytes

Oocytes

Ductal cells

Distal enterocytes

Serous glandular cells
T-reg

Salivary duct cells
Syncytiotrophoblasts
Spermatocytes
Pancreatic endocrine cells
Intestinal goblet cells
plasmacytoid DC
Glandular and luminal cells
Proximal enterocytes
Breast myoepithelial cells
Paneth cells

Exocrine glandular cells
Fibroblasts

Gastric mucus-secreting cells
Mucus glandular cells
Breast glandular cells
T-cells

Cholangiocytes
Endometrial stromal cells
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3.38e-25
1.20e-23
1.48e-19
1.34e-16
2.08e-16
2.19e-16
7.75e-12
1.57e-10
2.85e-09
5.26e-09
5.94e-09
3.47e-08
4.13e-07
3.37e-06
1.06e-05
4.43e-05
6.13e-05
3.78e-04
4.37e-04
1.59e-03
1.59e-03
1.84e-03
1.00e-02
1.09e-02
1.15e-02
1.25e-02
2.90e-02
3.75e-02
4.93e-02

5.23
3.66
4.04
4.47
6.57
5.13
2.43
4.76
2.54
3.81
2.94

2.17
1.79
3.18
2.46
2.07
2.27
1.74
2.6

2.02
2.47
1.82
1.74
2.37
2.32
1.39
1.92
1.75



A.3 Cell Types of Differentially Expressed Genes for the

Smoking Dataset

Comparison

Age up

Age up

Age up

Age up
CurrentVsNever Tumor
down

CurrentVsNever Tumor
down

CurrentVsNever Tumor
down

CurrentVsNever Tumor
down

CurrentVsNever Tumor
down

FormerVsNever Tumor

up
FormerVsNever Tumor

up
TissueXSex down

TissueXSex down

TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down

Cell Types
memory B-cell
naive B-cell
Plasma cells
B-cells

Distal enterocytes

Proximal enterocytes
Cholangiocytes

Serous glandular cells
myeloid DC

Basal respiratory cells
Exocrine glandular cells

Alveolar cells type 2
Alveolar cells type 1
Adipocytes

Endothelial cells
monocytes

Lymphatic endothelial cells
Alveolar cells type 1
granulocytes

Alveolar cells type 2
Macrophages

Smooth muscle cells
Kupffer cells
Fibroblasts

Leydig cells

dendritic cells
Hofbauer cells
intermediate monocyte
Microglial cells
classical monocyte
non-classical monocyte
NK-cells

neutrophil

myeloid DC
Peritubular cells
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Adj. p-
value
2.99e-10
2.99e-10
1.68e-09
1.30e-08
6.34e-03

1.14e-02
1.23e-02
1.35e-02
3.89e-02
3.06e-03
4.71e-02

1.75e-04
4.04e-02
3.18e-141
2.79e-120
3.49e-75
2.56e-66
1.75e-63
6.43e-61
5.25e-57
5.05e-56
5.25e-55
4.70e-46
1.79e-44
4.83e-38
7.76e-38
5.48e-33
7.89e-31
9.74e-31
4.09e-30
5.50e-30
4.95e-28
1.62e-27
2.05e-24
9.37e-24

Odds
Ratio

74.39
71.91
56.04
42.54
16.18

12.18

26.27

23.01

14.58

101.34

67.55

inf
119.08
14.65
17.14
4.29
9.50
9.24
3.38
10.89
6.24
7.51
5.71
6.09
6.19
3.24
4.30
4.92
3.37
4.89
4.39
3.29
2.89
4.30
4.15



TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

TumorVsNormal up

Langerhans cells

Ciliated cells

eosinophil

T-cells

Schwann cells
Mesothelial cells

basophil

Cardiomyocytes

Sertoli cells

Astrocytes
Oligodendrocyte precursor cells
Ovarian stromal cells
Skeletal myocytes

Muller glia cells

Basal prostatic cells
plasmacytoid DC

NK-cell

gdT-cell

Glandular and luminal cells
Endometrial stromal cells
Oligodendrocytes
Hepatocytes

Breast myoepithelial cells
B-cells

Inhibitory neurons

MAIT T-cell

Secretory cells
Excitatory neurons
Cholangiocytes
Melanocytes

Ionocytes

Granulosa cells

Serous glandular cells
Plasma cells

memory B-cell

Erythroid cells

naive B-cell

B-cells

Extravillous trophoblasts
Undifferentiated cells
Basal keratinocytes
Spermatogonia
Suprabasal keratinocytes
Squamous epithelial cells
Basal respiratory cells
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2.31e-23
3.96e-23
1.13e-19
1.25e-18
2.08e-15
2.62e-15
2.25e-11
2.77e-11
7.51e-11
1.67e-10
4.25e-09
2.09e-08
3.93e-08
3.93e-08
4.87e-08
1.11e-07
9.21e-07
7.41e-06
2.33e-05
3.18e-05
6.42e-05
4.52e-04
4.79e-04
6.32e-04
7.13e-04
7.60e-04
2.25e-03
2.74e-03
2.93e-03
8.62e-03
9.43e-03
2.21e-02
4.88e-02
2.35e-113
2.86e-65
3.03e-64
6.22e-63
3.01e-50
5.92e-50
1.41e-40
1.50e-30
1.01e-29
5.25e-29
2.25e-23
1.26e-20

3.31
3.49
3.12
2.34
3.37
4.03
2.10
2.25
3.07
1.89
1.71
2.92
2.22
2.32
3.08
2.11
2.37
2.54
2.14
2.26
1.46
1.56
2.35
1.55
1.34
2.04
2.23
1.30
2.00
1.76
1.76
1.67
1.58
16.28
11.86
12.61
11.21
6.97
7.74
13.70
9.02
6.21
6.02
6.06
6.75



TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up

Gastric mucus-secreting cells
Cytotrophoblasts

Club cells

Ionocytes

Distal enterocytes

T-reg

Spermatocytes

Oocytes

Basal squamous epithelial cells
Serous glandular cells
Ductal cells

Intestinal goblet cells
Salivary duct cells
Pancreatic endocrine cells
Cholangiocytes

Exocrine glandular cells
Paneth cells

Glandular and luminal cells
Proximal enterocytes
Breast glandular cells
Breast myoepithelial cells
plasmacytoid DC
Fibroblasts

T-cells

Endometrial stromal cells
Enteroendocrine cells
Syncytiotrophoblasts
Mucus glandular cells
Collecting duct cells
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4.70e-18
1.24e-15
2.44e-13
6.66e-13
2.48e-12
2.48e-12
7.70e-12
2.19e-11
3.65e-10
1.75e-09
2.20e-08
5.55e-07
2.62e-06
2.31e-05
3.90e-05
6.20e-05
2.69e-04
2.92e-04
3.36e-04
4.43e-04
1.07e-03
1.72e-03
1.90e-03
3.79e-03
6.02e-03
1.25e-02
2.29e-02
2.41e-02
4.31e-02

4.94
4.66
6.85
5.26
3.32
4.03
2.50
2.71
3.96
4.61
4.87
3.24
4.98
3.56
3.41
3.40
2.44
2.59
1.91
3.38
3.05
2.01
2.17
1.62
2.27
2.15
1.59
2.38
2.07



A.4 Reactome Pathways for Full Dataset (Top 20)

Comparison

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex
TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

TissueXSex

up

up

up

up

up

up

up

up

up

up

up

up

up

up

up

up

up

up

down

down

down

down

Reactome:id
R-HSA-
6805567
R-HSA-
5619043

R-HSA-
193775

R-HSA-
193807

R-HSA-
5357801
R-HSA-
9754189
R-HSA-
9823739
R-HSA-
109581
R-HSA-
9832991
R-HSA-
452723
R-HSA-75153
R-HSA-
9725554

R-HSA-
9734767
R-HSA-
111465
R-HSA-
351906
R-HSA-
1266738
R-HSA-
6809371
R-HSA-
446107
R-HSA-
913709
R-HSA-
3906995
R-HSA-
427589
R-HSA-
427652

Pathway
Keratinization

Defective SLC2A1 causes
GLUT1 deficiency syndrome 1
(GLUT1DS1)

Synthesis of bile acids and
bile salts via 24-
hydroxycholesterol

Synthesis of bile acids and
bile salts via 27-
hydroxycholesterol
Programmed Cell Death

Germ layer formation at
gastrulation

Formation of the anterior
neural plate

Apoptosis

Formation of the posterior
neural plate

Transcriptional regulation of
pluripotent stem cells
Apoptotic execution phase
Differentiation of
keratinocytes in interfollicular
epidermis in mammalian skin
Developmental Cell Lineages

Apoptotic cleavage of cellular
proteins

Apoptotic cleavage of cell
adhesion proteins
Developmental Biology

Formation of the cornified
envelope

Type I hemidesmosome
assembly

O-linked glycosylation of
mucins

Diseases associated with O-
glycosylation of proteins
Type II Na+/Pi cotransporters

Sodium-coupled phosphate
cotransporters
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Adj. p-
value
1.11e-16

3.85e-03

3.15e-03

1.99e-03

1.09e-03
1.00e-03
6.33e-04
5.00e-04
3.46e-04
3.44e-03

1.58e-04
9.86e-05

9.86e-05
5.62e-05
1.41e-06
1.49e-08
1.11e-16
2.14e-04
7.14e-03
8.10e-03
8.63e-03

1.21e-02

Odds
ratio
47.95

430.73

21.78

27.92

8.15

40.65

52.63

10.13

74.59

20.76

27.33
32.44

32.44

39.88

174.91

8.14

82.36

99.48

15.68

14.64

133.35

88.88



TissueXSex down
TissueXSex down

TissueXSex down

TissueXSex down
TissueXSex down
TissueXSex down
TissueXSex down
TissueXSex down
TissueXSex down
TissueXSex down
TissueXSex down
TissueXSex down

TissueXSex down

TissueXSex down
TissueXSex down
TissueXSex down
Age up
Age up
Age up
Age up

Age up

Age up
Age up

Age up

R-HSA-
5173105
R-HSA-
168179
R-HSA-
2142770

R-HSA-
1500931
R-HSA-
166016
R-HSA-
3781865
R-HSA-
5621481
R-HSA-
168898
R-HSA-
168249
R-HSA-
181438
R-HSA-
5621480
R-HSA-
1566977
R-HSA-
5619045

R-HSA-
5687583
R-HSA-
5683826
R-HSA-
5688890
R-HSA-
6791312
R-HSA-
6799198
R-HSA-
109704
R-HSA-
380108
R-HSA-
2173782

R-HSA-
2033515
R-HSA-
5654741
R-HSA-
8853334

O-linked glycosylation

Toll Like Receptor TLR1:TLR2
Cascade

Synthesis of 15-
eicosatetraenoic acid
derivatives

Cell-Cell communication

Toll Like Receptor 4 (TLR4)
Cascade
Diseases of glycosylation

C-type lectin receptors (CLRs)
Toll-like Receptor Cascades
Innate Immune System

Toll Like Receptor 2 (TLR2)
Cascade
Dectin-2 family

Fibronectin matrix formation

Defective SLC34A2 causes
pulmonary alveolar
microlithiasis (PALM)
Defective SLC34A2 causes
PALM

Surfactant metabolism

Defective CSF2RA causes
SMDP4

TP53 Regulates Transcription
of Cell Cycle Genes

Complex I biogenesis

PI3K Cascade

Chemokine receptors bind
chemokines

Binding and Uptake of
Ligands by Scavenger
Receptors

t(4;14) translocations of
FGFR3

Signaling by FGFR3

Signaling by FGFR3 fusions in
cancer
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2.22e-02

2.32e-02

3.75e-02

3.31e-02

3.34e-02

4.77e-02

4.81e-02

4.98e-02

6.76e-03

2.32e-02

5.71e-03

1.21e-02

5.19e-03

5.19e-03

1.11e-16

1.21e-09

1.11e-02

9.22e-03

8.92e-03

8.63e-03

7.99e-03

7.30e-03

7.51e-03

7.30e-03

8.45

8.26

25.36

6.77

6.73

5.5

5.48

5.37

3.44

8.26

17.69

88.88

266.74

266.74

221.67

622.44

13.6

15.04

15.31

15.59

8.03

207.35

16.82

207.35



Age up
Age up
Age up
Age up
Age up
Age up
Age up
Age up
Age up
Age up
Age up
Age up
Age down
Age down
Age down
Age down
Age down
Age down
Age down

Age down
Age down

Age down
Age down

Age down
Age down

Age down
Age down

R-HSA-
1266738
R-HSA-
112399
R-HSA-
2029482
R-HSA-
1500931
R-HSA-
2029480
R-HSA-
6783783
R-HSA-
9664433
R-HSA-
2428928
R-HSA-
5690714
R-HSA-
2428924
R-HSA-74751

R-HSA-
2404192

R-HSA-73886
R-HSA-
4839726
R-HSA-
3247509
R-HSA-
8939211
R-HSA-
8878171
R-HSA-
9609646
R-HSA-
195258
R-HSA-75153
R-HSA-
195721
R-HSA-
157118
R-HSA-
201681
R-HSA-69306
R-HSA-
157579
R-HSA-73884
R-HSA-
212165

Developmental Biology
IRS-mediated signalling

Regulation of actin dynamics
for phagocytic cup formation
Cell-Cell communication

Fcgamma receptor (FCGR)
dependent phagocytosis
Interleukin-10 signaling

Leishmania parasite growth
and survival

IRS-related events triggered
by IGF1R

CD22 mediated BCR
regulation

IGF1R signaling cascade

Insulin receptor signalling
cascade

Signaling by Type 1 Insulin-
like Growth Factor 1 Receptor
(IGF1R)

Chromosome Maintenance

Chromatin organization

Chromatin modifying
enzymes
ESR-mediated signaling

Transcriptional regulation by
RUNX1
HCMV Infection

RHO GTPase Effectors

Apoptotic execution phase
Signaling by WNT

Signaling by NOTCH

TCF dependent signaling in
response to WNT
DNA Replication

Telomere Maintenance

Base Excision Repair

Epigenetic regulation of gene
expression
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6.80e-03

1.11e-02

6.76e-03

7.61e-03

1.16e-02

1.88e-02

1.16e-02

1.24e-02

1.35e-02

1.35e-02

1.35e-02

1.38e-02

4.02e-04

4.72e-04

4.72e-04

4.89e-04

5.16e-04

6.22e-04

1.42e-03

3.74e-04
1.54e-03

5.07e-04

2.21e-04

7.02e-05
1.73e-04

1.24e-04
9.20e-05

3.09

13.6

8.55

8.18

6.95

10.18

6.95

12.78

12.23

12.23

12.23

12.06

8.66
5.78

5.78

5.73

5.66

5.42

4.47

16.38
4.38

5.69

6.88

8.9
10.93

11.98
8.38



Age down
Age down
Age down
Age down

Age down
TumorVsNormal
up

TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal

up

MaleVsFemale up

R-HSA-
9610379
R-HSA-
9018519
R-HSA-
1474165
R-HSA-
9816359
R-HSA-68875
R-HSA-
9725554

R-HSA-69273

R-HSA-
176417
R-HSA-69306

R-HSA-
1592389
R-HSA-
6805567
R-HSA-
6811434
R-HSA-69481

R-HSA-69275

R-HSA-
9734767
R-HSA-
1474228
R-HSA-
983705
R-HSA-
983189
R-HSA-69190

R-HSA-
453274
R-HSA-68962

R-HSA-69239

R-HSA-
5653656
R-HSA-68886

R-HSA-
176974
R-HSA-
3214842

HCMV Late Events

Estrogen-dependent gene
expression
Reproduction

Maternal to zygotic transition
(MZT)
Mitotic Prophase

Differentiation of
keratinocytes in interfollicular
epidermis in mammalian skin
Cyclin A/B1/B2 associated
events during G2/M transition
Phosphorylation of Emil

DNA Replication

Activation of Matrix
Metalloproteinases
Keratinization
COPI-dependent Golgi-to-ER
retrograde traffic

G2/M Checkpoints

G2/M Transition
Developmental Cell Lineages
Degradation of the
extracellular matrix
Signaling by the B Cell
Receptor (BCR)

Kinesins

DNA strand elongation
Mitotic G2-G2/M phases
Activation of the pre-
replicative complex
Synthesis of DNA
Vesicle-mediated transport
M Phase

Unwinding of DNA

HDMs demethylate histones
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8.50e-05

4.53e-05

3.40e-05

2.68e-05

2.42e-05
6.98e-05

3.19e-04

2.09e-04

1.74e-04

1.34e-04

1.32e-04

1.19e-04

1.08e-04

9.92e-05

6.98e-05

6.59e-05

3.83e-13

6.06e-05

5.60e-05

5.05e-05

3.47e-05

3.21e-05

2.21e-05

2.16e-05

1.79e-05

3.55e-04

8.53

9.82

10.46

11.02

11.28
4.13

4.57

19.4

2.06

4.67

1.88

2.54

2.19

1.94

4.13

2.28

3.77

3.32

4.77

5.15

2.49

1.39

1.66

16.33

77.15



MaleVsFemale up R-HSA- Formation of the cornified 2.36e-04 27.36

6809371 envelope
MaleVsFemale up R-HSA- Keratinization 9.87e-04 16.43
6805567
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A.5 Reactome Pathways for Smoking Dataset (Top 20)

Comparison Reaf:to Adj. p- Odfls
me:id Pathway value ratio

Age down R-HSA- Scavenging of heme from plasma 6.81e-03 inf
2168880

Age down R-HSA- Binding and Uptake of Ligands by 1.08e-02 inf
2173782 Scavenger Receptors

Age up R-HSA- CD22 mediated BCR regulation 8.77e-15 199.20
5690714

Age up R-HSA- Regulation of Complement cascade 1.63e-14 127.96
977606

Age up R-HSA- Complement cascade 4.55e-14 112.99
166658

Age up R-HSA- FCERI mediated NF-kB activation 1.01e-11 75.63
2871837

Age up R-HSA- FCGR activation 1.51e-13 133.82
2029481

Age up R-HSA- Scavenging of heme from plasma 1.90e-13 129.69
2168880

Age up R-HSA- Role of LAT2/NTAL/LAB on calcium 2.05e-13 128.37
2730905 mobilization

Age up R-HSA- Creation of C4 and C2 activators 2.74e-13 123.34
166786

Age up R-HSA- Initial triggering of complement 5.08e-13 113.34
166663

Age up R-HSA- FCERI mediated MAPK activation 6.59e-13 109.39
2871796

Age up R-HSA- Classical antibody-mediated 9.39%e-14 142.92
173623 complement activation

Age up R-HSA- FCERI mediated Ca+2 mobilization 9.02e-13 104.82
2871809

Age up R-HSA- FCGR3A-mediated IL10 synthesis 1.82e-12  95.26
9664323

Age up R-HSA- Immunoregulatory interactions 2.92e-12 68.62
198933 between a Lymphoid and a non-

Lymphoid cell

Age up R-HSA- Cell surface interactions at the 3.86e-12 66.36
202733 vascular wall

Age up R-HSA- Parasite infection 4.27e-12  84.91
9664407

Age up R-HSA- FCGR3A-mediated phagocytosis 4.27e-12 84.91
9664422

Age up R-HSA- Leishmania phagocytosis 4.27e-12  84.91
9664417

Age up R-HSA- Regulation of actin dynamics for 4.49e-12 84.34
2029482 phagocytic cup formation

Age up R-HSA- Binding and Uptake of Ligands by 7.30e-12  78.99
2173782 Scavenger Receptors

MaleVsFemal R-HSA- HDMs demethylate histones 3.55e-04  70.13

e up 3214842
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TissueXSex
down

TissueXSex
down
TissueXSex
down
TissueXSex
down
TissueXSex
down
TissueXSex
down
TissueXSex
up
TissueXSex
up
TissueXSex
up
TissueXSex

up

TissueXSex
up
TissueXSex
up
TissueXSex
up
TissueXSex
up
TissueXSex

up

TissueXSex
up
TissueXSex
up
TissueXSex
up
TissueXSex
up
TissueXSex
up
TissueXSex
up
TissueXSex
up
TissueXSex
up
TissueXSex

up

R-HSA-
5619045

R-HSA-
5683826
R-HSA-
5687583
R-HSA-
427652
R-HSA-
5687613
R-HSA-
427589
R-HSA-
9832991
R-HSA-
9758941
R-HSA-
449147
R-HSA-
2892245

R-HSA-
9834899
R-HSA-
452723
R-HSA-
9754189
R-HSA-
9823739
R-HSA-
2892247

R-HSA-
8986944
R-HSA-
1280215
R-HSA-
3769402
R-HSA-
195721
R-HSA-
168256
R-HSA-
201681
R-HSA-
6785807
R-HSA-
1266738
R-HSA-
9856649

Defective SLC34A2 causes
pulmonary alveolar microlithiasis
(PALM)

Surfactant metabolism

Defective SLC34A2 causes PALM

Sodium-coupled phosphate
cotransporters

Diseases associated with surfactant
metabolism

Type II Na+/Pi cotransporters

Formation of the posterior neural
plate
Gastrulation

Signaling by Interleukins

POUSF1 (OCT4), SOX2, NANOG
repress genes related to
differentiation

Specification of the neural plate
border

Transcriptional regulation of
pluripotent stem cells

Germ layer formation at gastrulation

Formation of the anterior neural
plate

POUSF1 (OCT4), SOX2, NANOG
activate genes related to
proliferation

Transcriptional Regulation by MECP2

Cytokine Signaling in Immune
system

Deactivation of the beta-catenin
transactivating complex
Signaling by WNT

Immune System

TCF dependent signaling in response
to WNT

Interleukin-4 and Interleukin-13
signaling

Developmental Biology

Transcriptional and post-

translational regulation of MITF-M
expression and activity
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9.63e-04

1.11e-04

9.63e-04

2.25e-03

5.13e-03

1.60e-03

8.08e-07

1.29e-04

1.79e-03

1.28e-03

3.08e-03

8.35e-06

2.38e-06

1.49e-06

2.70e-03

1.28e-02

4.98e-03

5.64e-03

4.21e-02

2.92e-02

2.74e-02

1.84e-04

1.21e-02

5.77e-03

1402.50

148.97

1402.50

467.33

186.78

701.12

1869.17

126.31

32.23

inf

inf

520.19

1018.64

1318.82

inf

inf

18.47

inf

inf

6.44

inf

105.44

11.10

inf



TissueXSex
up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up

TumorVsNor
mal up
TumorVsNor
mal up
TumorVsNor
mal up

R-HSA-
9730414
R-HSA-
2029481
R-HSA-
9664417
R-HSA-
5690714
R-HSA-
69278
R-HSA-
1640170
R-HSA-
69620
R-HSA-
9664323
R-HSA-
9664422
R-HSA-
9664407
R-HSA-
212300
R-HSA-
2730905
R-HSA-
2029480
R-HSA-
983705
R-HSA-
173623
R-HSA-
166786
R-HSA-
2029482
R-HSA-
9662851

R-HSA-
9664433
R-HSA-
2454202
R-HSA-
166663

MITF-M-regulated melanocyte
development
FCGR activation

Leishmania phagocytosis

CD22 mediated BCR regulation

Cell Cycle, Mitotic

Cell Cycle

Cell Cycle Checkpoints
FCGR3A-mediated IL10 synthesis
FCGR3A-mediated phagocytosis
Parasite infection

PRC2 methylates histones and DNA

Role of LAT2/NTAL/LAB on calcium
mobilization

Fcgamma receptor (FCGR)
dependent phagocytosis

Signaling by the B Cell Receptor
(BCR)

Classical antibody-mediated
complement activation

Creation of C4 and C2 activators

Regulation of actin dynamics for
phagocytic cup formation
Anti-inflammatory response
favouring Leishmania parasite
infection

Leishmania parasite growth and
survival

Fc epsilon receptor (FCERI) signaling

Initial triggering of complement
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2.13e-02

.11e-16

.11e-16

.11e-16

.11e-16

.11e-16

.11e-16

.11e-16

.11e-16

.11e-16

5.81e-11

1.

.11e-16

.11e-16

.11e-16

.11e-16

.11e-16

.11e-16

.11e-16

.11e-16

.11e-16

1le-16

inf

24.14

10.65

33.96

3.64

3.08

4.24

12.77

10.65

10.65

10.54

18.85

7.74

5.72

28.07

20.34

10.54

7.74

7.74

5.31

17.27



A.6 Gene Ontology Biological Processes (GO:BP) for Full Dataset

Comparison

TissueXSex
TissueXSex

TissueXSex

TissueXSex
TissueXSex
TissueXSex
TissueXSex
TissueXSex
TissueXSex
TissueXSex
TissueXSex
TissueXSex
TissueXSex
TissueXSex
TissueXSex

TissueXSex
TissueXSex
down

Age up
Age up
Age up
Age up
Age up
Age up

Age up

Age up
Age up
Age up
Age up
Age up
Age up

Age down
Age down
Age down

Age down

up
up

up

up
up
up
up
up
up
up
up
up
up
up
up

up

GO:id

GO:
GO:

GO:

GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:

GO:
GO:

GO:
GO:
GO:
GO:
GO:
GO:

GO:

GO:
GO:
GO:
GO:
GO:
GO:

GO:
GO:
GO:

GO:

0045109
0045104

0045103

0008544
0030216
0030855
0009913
0009888
0043588
0060429
0031424
0097435
0018149
0009753
0071395

0048513
0007585

0008544
0045109
0031424
0030216
0043588
0045104

0045103

0009913
0019730
0030855
0009888
0006959
0006958

0006334
0034728
0061644

0065004

Biological Process
intermediate filament organization

intermediate filament cytoskeleton
organization

intermediate filament-based
process

epidermis development

keratinocyte differentiation
epithelial cell differentiation
epidermal cell differentiation
tissue development

skin development

epithelium development
keratinization

supramolecular fiber organization
peptide cross-linking

response to jasmonic acid

cellular response to jasmonic acid
stimulus
animal organ development

respiratory gaseous exchange by
respiratory system

epidermis development
intermediate filament organization
keratinization

keratinocyte differentiation

skin development

intermediate filament cytoskeleton
organization

intermediate filament-based
process

epidermal cell differentiation

antimicrobial humoral response
epithelial cell differentiation
tissue development

humoral immune response
complement activation, classical
pathway

nucleosome assembly
nucleosome organization
protein localization to CENP-A
containing chromatin
protein-DNA complex assembly
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Adj. p-
value
3.40e-11
2.77e-10

3.02e-10

3.04e-08
4.54e-08
7.31e-07
7.47e-07
2.17e-06
5.36e-06
1.05e-05
4.85e-03
8.46e-03
8.68e-03
1.42e-02
1.42e-02

3.07e-02
4.73e-02

9.65e-07
4.39e-05
7.92e-05
1.02e-04
1.50e-04
1.58e-04

1.66e-04

8.08e-04
8.29e-04
3.25e-03
1.89e-02
2.13e-02
2.80e-02

1.01e-09
4.38e-09
2.44e-07

7.12e-07

Odds
ratio
457.45
345.65

341.67

107.97
176.73
65.97
122.56
43.04
94.66
45.82
157.43
35.26
353.3
2827.28
2827.28

20.76
148.66

86.72
225.75
199.34
113.12
74.7
172.43

170.51

78.73
121.73
38.22
22.23
61.49
223.09

176.21
148.2
715.13

81.42



Age down
Age down
Age down

Age down

Age down
Age down

Age down
Age down
Age down
Age down
Age down
Age down
Age down
Age down

TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up

GO:
GO:
GO:

GO:

GO:
GO:

GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

0071168
0006396
0071459

0045653

0034502
0045652

0006325
0006338
0016070
0071824
0030219
0051276
0090304
0032200
0000278

1903047

0022402

0140014

0007059

0016064

0019724

0002250

0051301

0050896

0098813

0000819

0051276

0000070

0000280

0007049

0048285

protein localization to chromatin
RNA processing

protein localization to chromosome,
centromeric region

negative regulation of
megakaryocyte differentiation
protein localization to chromosome

regulation of megakaryocyte
differentiation
chromatin organization

chromatin remodeling

RNA metabolic process
protein-DNA complex organization
megakaryocyte differentiation
chromosome organization

nucleic acid metabolic process
telomere organization

mitotic cell cycle

mitotic cell cycle process

cell cycle process

mitotic nuclear division
chromosome segregation
immunoglobulin mediated immune
response

B cell mediated immunity
adaptive immune response

cell division

response to stimulus

nuclear chromosome segregation
sister chromatid segregation
chromosome organization
mitotic sister chromatid
segregation

nuclear division

cell cycle

organelle fission
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1.77e-06
2.39e-06
1.82e-05

6.61e-05

1.54e-04
1.10e-03

2.88e-03
4.62e-03
6.92e-03
8.02e-03
1.09e-02
3.06e-02
3.50e-02
4.53e-02
3.20e-26

4.64e-26

2.25e-22

4.87e-22

6.11e-22

9.18e-22

1.83e-21

2.66e-21

1.21e-20

1.49e-20

6.84e-20

2.43e-19

4.22e-19

1.17e-18

1.54e-18

9.12e-17

9.31e-17

220.22
23.04
265.54

483.1

99.49
219.53

26.27
28.29
15.55
23.36
118.72
25.53
14.27
49.86
12.5

13.52

10.11

20.88

16.34

25.37

24.89

12.28

12.76

8.12

18.17

21.73

12.47

24.14

14.54

8.1

13.15



TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al up
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down
TumorVsNorm
al down

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

0044770

0051983

0010564

0040011

0048870

0016477

0051239

0030334

2000145

0040012

0001944

0072359

0001568

0048856

0007155

0007166

0009653

0032501

0007275

0030335

2000147

0040017

0048646

cell cycle phase transition
regulation of chromosome
segregation

regulation of cell cycle process
locomotion

cell motility

cell migration

regulation of multicellular
organismal process

regulation of cell migration
regulation of cell motility
regulation of locomotion
vasculature development
circulatory system development
blood vessel development
anatomical structure development
cell adhesion

cell surface receptor signaling
pathway

anatomical structure

morphogenesis
multicellular organismal process

multicellular organism development

positive regulation of cell migration
positive regulation of cell motility
positive regulation of locomotion

anatomical structure formation
involved in morphogenesis
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1.09e-16

1.63e-15

5.52e-15

4.59e-45

4.71e-45

3.08e-44

5.93e-44

3.84e-42

2.85e-41

6.90e-41

3.28e-39

3.76e-37

3.79e-37

7.86e-36

1.69e-34

5.01e-33

9.95e-33

4.03e-32

5.09e-32

1.20e-31

1.62e-31

2.25e-31

5.15e-31

12.63

27.87

10.57

6.18

5.42

5.66

4.48

6.79

6.53

6.38

7.28

5.89

7.23

3.63

5.11

4.15

4.19

3.44

3.68

7.73

7.51

7.4

5.37



Dataset

Comparison
Age up
Age up
Age up

Age up

Age up
Age up
Age up

Age up
Age up

FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up

GO:id

G0:0002250
G0:0006955
G0:0002460

G0:0016064

G0:0019724
G0:0002376
G0:0002449

G0:0002252
G0:0002443

G0:0071395

G0:0009753

G0:0044597

G0:0030647

G0:0044598

G0:0030638

G0:0042448

G0:0016137

G0:1902644

G0:0071398

G0:0008207

G0:1901661

G0O:0006693

G0:0006692

Biological Process
adaptive immune response
immune response
adaptive immune response
based on somatic
recombination of immune
receptors built from
immunoglobulin superfamily
domains

immunoglobulin mediated
immune response

B cell mediated immunity
immune system process
lymphocyte mediated
immunity

immune effector process
leukocyte mediated
immunity

cellular response to
jasmonic acid stimulus
response to jasmonic acid

daunorubicin metabolic
process

aminoglycoside antibiotic
metabolic process
doxorubicin metabolic
process

polyketide metabolic
process

progesterone metabolic
process

glycoside metabolic process

tertiary alcohol metabolic
process

cellular response to fatty
acid

C21-steroid hormone
metabolic process
quinone metabolic process

prostaglandin metabolic
process

prostanoid metabolic
process
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Adj. p-
value
4.08e-11
1.92e-06
2.20e-06

2.87e-06

3.13e-06
6.79e-05
8.63e-05

1.59e-04
3.61e-04

2.15e-04
2.15e-04
1.29e-03
1.61e-03
1.61e-03
1.61e-03
4.87e-03
6.81e-03
8.27e-03
2.13e-02
2.51e-02
3.08e-02
4.03e-02

4.20e-02

A.7 Gene Ontology Biological Processes (GO:BP) for Smoking

Odds
ratio

264.30
95.59
167.22

237.37

233.81
67.56
132.10

88.65
103.15

17675.7
5
17675.7
5
5049.86
4418.56
4418.56
4418.56
2356.33
1963.53
1767.12
1070.79
981.51
883.31

768.03

751.68



CurrentVsForme
r Normal up
CurrentVsForme
r Normal up
CurrentVsForme
r Normal up
CurrentVsNever
Tumor down

CurrentVsNever
Tumor down
CurrentVsNever
Tumor down

CurrentVsNever
Tumor down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down

G0:0009692

G0:0017143

G0:0019341

G0:0001580

G0:0050913

G0:0050912

G0:0050909

G0:0048856

G0:0051239

G0:0048870

G0:0032501

G0:0032502

G0:0007275

G0:0016477

G0O:0009653

G0:0001944

G0:0048731

G0:0072359

G0:0040011

G0:0001568

G0O:0050896

G0O:0007155

G0:0007166

G0:0030334

G0:0040012

ethylene metabolic process

insecticide metabolic
process

dibenzo-p-dioxin catabolic
process

detection of chemical

stimulus involved in sensory

perception of bitter taste
sensory perception of bitter
taste

detection of chemical

stimulus involved in sensory

perception of taste
sensory perception of taste

anatomical structure
development

regulation of multicellular
organismal process

cell motility

multicellular organismal
process

developmental process
multicellular organism
development

cell migration

anatomical structure
morphogenesis
vasculature development
system development
circulatory system
development

locomotion

blood vessel development
response to stimulus

cell adhesion

cell surface receptor
signaling pathway

regulation of cell migration

regulation of locomotion
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4.95e-02

4.95e-02

4.95e-02

1.51e-03

2.23e-03

2.40e-03

9.25e-03

1.02e-59

4.28e-57

1.23e-55

2.00e-53

3.59e-53

1.42e-52

6.95e-52

4.51e-48

2.05e-47

2.31e-47

5.09e-47

1.85e-46

3.99e-46

1.34e-45

5.88e-43

3.71e-42

3.16e-41

4.50e-41

inf

inf

inf

389.66

339.68

331.18

206.92

5.62

6.47

7.75

5.28

5.35

5.61

7.92

6.22

10.46

5.59

8.53

8.16

10.54

5.03

7.24

5.85

8.72

8.30



TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal

up

TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal

up

G0:2000145

G0:0051716

G0:0002250

G0:0016064

G0:0019724

G0:1903047

G0:0098813

G0:0007059

G0:0140014

G0:0000278

G0:0000070

G0:0051276

G0:0000819

G0:0050896

G0:0022402

G0:0000280

G0:0002460

G0:0006955

G0:0044770

G0:0002449

G0:0051301

G0:0048285

regulation of cell motility
cellular response to stimulus
adaptive immune response
immunoglobulin mediated
immune response

B cell mediated immunity
mitotic cell cycle process
nuclear chromosome
segregation

chromosome segregation
mitotic nuclear division
mitotic cell cycle

mitotic sister chromatid
segregation

chromosome organization
sister chromatid segregation
response to stimulus

cell cycle process

nuclear division

adaptive immune response
based on somatic
recombination of immune
receptors built from
immunoglobulin superfamily
domains

immune response

cell cycle phase transition
lymphocyte mediated
immunity

cell division

organelle fission
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5.08e-41

2.01e-40

2.34e-38

8.24e-30

1.73e-29

7.02e-25

4.37e-24

1.33e-23

3.89e-23

8.39e-23

1.13e-22

3.90e-22

4.13e-22

1.72e-20

3.44e-20

5.02e-20

9.91e-20

3.57e-19

5.81e-19

7.52e-19

1.65e-18

7.89%e-18

8.45

4.89

18.52

35.52

34.84

14.34

22.58

18.75

23.91

12.58

30.73

14.58

26.36

7.72

10.26

16.58

18.13

8.64

14.61

18.05

13.08

14.75



A.8 Gene Ontology Cellular Components (GO:CC) for Full
Dataset (Top 20)

Comparison

TissueXSex up
TissueXSex up
TissueXSex up

TissueXSex up
TissueXSex up
TissueXSex up
TissueXSex up
TissueXSex up
TissueXSex up
TissueXSex up

TissueXSex up
TissueXSex up
TissueXSex up
TissueXSex up
TissueXSex up
TissueXSex down

TissueXSex down
TissueXSex down

TissueXSex down

TissueXSex down
TissueXSex down

TissueXSex down
TissueXSex down

TissueXSex down
TissueXSex down
TissueXSex down
TissueXSex down
Age up

Age up
Age up
Age up
Age up

Age up

GO:id

GO:
GO:
GO:

GO:
GO:
GO:
GO:
GO:
GO:
GO:

GO:
GO:
GO:
GO:
GO:
GO:

GO:
GO:

GO:

GO:
GO:

GO:
GO:

GO:
GO:
GO:
GO:
GO:

GO:
GO:
GO:
GO:

GO:

0001533
0005882
0045111

0045095
0030057
0005911
0099512
0099081
0005576
0099513

0070161
0005829
0099080
0005615
0005737
0042599

0005771
0097208

0097486

0031982
0031906

0005576
0045334

0030141
0005770
0005615
0099503
0042571

0005576
0005615
0001533
0019814

0005882

Cellular Components

cornified envelope
intermediate filament

intermediate filament
cytoskeleton
keratin filament

desmosome
cell-cell junction
supramolecular fiber

supramolecular polymer

extracellular region

polymeric cytoskeletal
fiber
anchoring junction

cytosol

supramolecular complex

extracellular space
cytoplasm
lamellar body

multivesicular body
alveolar lamellar body

multivesicular body
lumen
vesicle

late endosome lumen

extracellular region

clathrin-coated
endocytic vesicle
secretory granule

late endosome
extracellular space
secretory vesicle

immunoglobulin
complex, circulating
extracellular region

extracellular space
cornified envelope

immunoglobulin
complex
intermediate filament
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Adj. p-
value
2.19e-15
2.12e-08
7.13e-08

2.79e-07
5.19e-06
3.38e-04
3.70e-04
3.94e-04
4.44e-04
5.32e-04

1.24e-03
2.92e-03
4.33e-03
5.53e-03
1.19e-02
1.10e-07

5.38e-05
2.29e-03

2.29e-03

2.72e-03
3.91e-03

4.65e-03
8.80e-03

1.17e-02
2.04e-02
2.15e-02
3.10e-02
4.74e-05

6.00e-05
1.20e-04
1.31e-04
1.69e-04

9.92e-04

Odds
ratio

706.34
141.3
120.56

219.23
534.3
47.97
33.32
33.06
23.04
36.83

32.76
20.27
24.44
19.02
37.89
1308.8

237.79
1413.6

1413.6

20.05
1009.7

18.99
131.15

29.41
50.45
17.06
24.56
1060.1

24.49
23.65
214.02
104.31

71.92



Age up
Age up

Age up

Age down
Age down
Age down

Age down

Age down

Age down

Age down

Age down
Age down
Age down
Age down

Age down

Age down
Age down
Age down

Age down
Age down
TumorVsNormal up

TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up

TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up

GO:

GO:

GO:
GO:
GO:
GO:

GO:

GO:

GO:

GO:

GO:
GO:
GO:
GO:

GO:

GO:
GO:
GO:

GO:

GO:

GO:

GO:
GO:
GO:
GO:
GO:
GO:

GO:
GO:
GO:
GO:

0045111

0071735

0045095
0000786
0005730
0061638

0043505

0034506

0043232

0043228

0005634
0031981
0043233
0031974

0070013

0000785
0032993
0000775

0043231

0000781

0019814

0005576
0005615
0070062
1903561
0043230
0065010

0098687
0001533
0000793
0000775

intermediate filament
cytoskeleton

IgG immunoglobulin
complex

keratin filament
nucleosome
nucleolus

CENP-A containing
chromatin

CENP-A containing
nucleosome
chromosome,
centromeric core
domain

intracellular non-
membrane-bounded
organelle
non-membrane-
bounded organelle
nucleus

nuclear lumen
organelle lumen
membrane-enclosed
lumen

intracellular organelle
lumen

chromatin
protein-DNA complex

chromosome,
centromeric region

intracellular membrane-

bounded organelle

chromosome, telomeric

region
immunoglobulin
complex
extracellular region

extracellular space
extracellular exosome
extracellular vesicle
extracellular organelle

extracellular membrane-

bounded organelle
chromosomal region

cornified envelope

condensed chromosome

chromosome,
centromeric region
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2.08e-03

7.42e-03

4.08e-02
6.88e-14
1.91e-09
2.17e-08

2.17e-08

2.94e-08

1.21e-07

1.22e-07

3.67e-07
6.94e-07
5.24e-05
5.24e-05

5.24e-05

2.82e-03
4.44e-03
1.75e-02

4.40e-02

4.69e-02

1.41e-75

2.15e-38
7.50e-27
3.40e-16
4.16e-16
4.35e-16
4.35e-16

3.60e-15
2.00e-14
3.55e-14
2.11e-13

61.49

906.12

89.16
195.56
30.15
715.13

715.13

664.04

22.55

22.54

26.42
20.02
16.3
16.3

16.3

17.56
16.7
36.48

16.84

43.3

103.58

9.31
8.3
7.54
7.51
7.5
7.5

13.43
47.64
15.58
15.83



TumorVsNormal up

TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal up
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down

TumorVsNormal down

TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down

TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down
TumorVsNormal down

GO:

GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:

GO:

GO:
GO:
GO:
GO:

GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:
GO:

0000779

0005819
0005694
0000776
0071944
0072686
0000940
0005737
0099080
0071944
0005886
0009986
0005576
0062023

0030312

0031012
0098552
0031982
0009897

0070161
0005615
0031410
0097708
0030141
0015629
0005911
0042995
0099503
0030054

condensed
chromosome,
centromeric region
spindle
chromosome
kinetochore

cell periphery
mitotic spindle
outer kinetochore
cytoplasm
supramolecular complex
cell periphery
plasma membrane
cell surface
extracellular region

collagen-containing
extracellular matrix
external encapsulating
structure

extracellular matrix

side of membrane
vesicle

external side of plasma
membrane
anchoring junction

extracellular space
cytoplasmic vesicle
intracellular vesicle
secretory granule
actin cytoskeleton
cell-cell junction
cell projection
secretory vesicle
cell junction
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2.71e-13

9.00e-12
1.65e-11
6.53e-11
8.14e-11
1.03e-10
4.50e-10
4.67e-10
2.84e-09
7.93e-48
3.95e-32
3.31e-24
2.03e-21
1.55e-18

1.59e-18

4.22e-18
6.62e-18
1.06e-17
2.31e-17

7.00e-17
1.94e-13
2.44e-12
3.18e-12
4.47e-12
9.18e-12
2.61e-10
4.54e-10
8.81e-10
9.91e-10

19.33

11.44
6.86
17.9
6.2
16.92
105.65

6.91
3.87
3.54
5.33
3.38
6.58

5.82

5.77
5.17
3.27
6.69

4.66
3.18
3.27
3.26
4.19
5.02
4.78
3.17
3.75
3.18



A.9 Gene Ontology Cellular Components (GO:CC) for Smoking
Dataset (Top 20)

Comparison
Age up

Age up

Age up

Age up

Age up

Age up
CurrentVsForme
r Normal up

CurrentVsNever
Tumor down
CurrentVsNever
Tumor down
CurrentVsNever
Tumor down
CurrentVsNever
Tumor down
CurrentVsNever
Tumor down
CurrentVsNever
Tumor down
CurrentVsNever
Tumor down
CurrentVsNever
Tumor down
CurrentVsNever
Tumor down
CurrentVsNever
Tumor down
CurrentVsNever
Tumor down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down

GO:id

GO:
GO:
GO:
GO:
GO:
GO:
GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

0019814
0005576
0005615
0071944
0072562
0005886
0033181

0031982

0098552

0009897

0070062

1903561

0043230

0065010

0005615

0005886

0071944

0030659

0071944

0005886

0005576

0009986

0030312

0031012

0062023

Cellular Components
immunoglobulin complex
extracellular region
extracellular space

cell periphery

blood microparticle
plasma membrane

plasma membrane proton-

transporting V-type ATPase
complex

vesicle

side of membrane
external side of plasma
membrane

extracellular exosome
extracellular vesicle
extracellular organelle
extracellular membrane-
bounded organelle
extracellular space
plasma membrane

cell periphery
cytoplasmic vesicle membrane
cell periphery

plasma membrane
extracellular region

cell surface

external encapsulating
structure

extracellular matrix

collagen-containing
extracellular matrix
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Adj. p-
value
6.64e-15
1.04e-08
2.42e-05
9.14e-05
1.65e-04
7.37e-03
3.69e-02

6.79e-04
4.06e-03
6.10e-03
7.85e-03
8.44e-03
8.47e-03
8.47e-03
1.69e-02
1.92e-02
4.00e-02
4.96e-02
7.22e-72
6.95e-48
1.30e-35
1.50e-33
2.81e-28
9.54e-28

4.43e-27

Odds
ratio

740.07
221.71
56.31
67.44
194.39
31.17
70708

18.56

34.9

49.34

19.03

18.81

18.8

18.8

14.88

12.59

11.52

20.32

6.01

5.28

5.05

7.96

9.19

9.1

10.32



TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal

up

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

0031982

0005615

0098552

0016020

0070161

0009897

0031410

0097708

0042995

0030141

0005737

0120025

0005911

0019814

0005576

0005615

0000786

0071944

0005694

0098687

0000775

0005886

0000793

0000779

0070062

1903561

vesicle

extracellular space

side of membrane
membrane

anchoring junction
external side of plasma
membrane

cytoplasmic vesicle
intracellular vesicle

cell projection

secretory granule
cytoplasm

plasma membrane bounded
cell projection

cell-cell junction
immunoglobulin complex
extracellular region
extracellular space
nucleosome

cell periphery
chromosome
chromosomal region
chromosome, centromeric
region

plasma membrane
condensed chromosome
condensed chromosome,
centromeric region

extracellular exosome

extracellular vesicle
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1.18e-23

2.46e-22

7.83e-22

1.92e-20

2.04e-20

1.05e-19

1.36e-16

1.80e-16

4.96e-15

7.81e-15

7.81e-15

4.75e-14

9.94e-14

9.08e-102

4.28e-49

3.21e-30

1.08e-20

3.00e-20

6.70e-19

3.33e-17

1.27e-16

4.28e-14

1.07e-13

1.35e-13

1.58e-13

3.61e-13

4.53

4.61

7.22

4.27

6.42

9.2

4.48

4.47

4.41

5.72

4.24

4.38

6.8

174.84

10.86

8.96

35.47

7.15

8.38

15.55

19.58

6.36

16.63

21.52

7.21

7.13



TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up
TumorVsNormal
up

G0:0065010

G0:0043230

G0:0000776

G0:0000940

G0:0072562

G0:0001533

G0:0005819

extracellular membrane-
bounded organelle
extracellular organelle
kinetochore

outer kinetochore

blood microparticle

cornified envelope

spindle
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3.74e-13

3.74e-13

1.56e-12

5.36e-12

2.57e-11

3.49e-10

1.09e-09

7.12

7.12

21.28

141.69

23.16

39.76

11.15



A.10 Gene Ontology Molecular Functions (GO:MF) for Full

Dataset

Comparison
TissueXSex
up
TissueXSex

up
TissueXSex

up
TissueXSex

up
TissueXSex

up
TissueXSex

up
TissueXSex

up
TissueXSex

up
TissueXSex

up
TissueXSex

up
TissueXSex

up
TissueXSex

up
Age down

Age down
Age down
Age down
Age down
Age down
Age down
Age down
Age down
Age down
Age down
Age up

Age up

Age up

Age up

TumorVsNor
mal down

GO:id
G0:0030280

G0:0005200

G0:0018636

G0:0047115

G0:0047718

G0:0005198

G0:0047086

G0:0047023

G0:0047044

G0:0032052

G0:0019215

G0:0004032

G0:0030527

G0:0005198
G0:0046982
G0:0003676
G0:0003677
G0:0046983
G0:0097159
G0:0031492
G0:0003723
G0:0031491
G0:0031490
G0:0005198
G0:0034987
G0:0003823
G0:0030280

G0:0005102

Molecular Functions
structural constituent of skin
epidermis

structural constituent of
cytoskeleton

phenanthrene 9,10-
monooxygenase activity
trans-1,2-dihydrobenzene-1,2-
diol dehydrogenase activity
indanol dehydrogenase activity

structural molecule activity

ketosteroid monooxygenase
activity

androsterone dehydrogenase
activity
androstan-3-alpha,17-beta-diol
dehydrogenase activity

bile acid binding

intermediate filament binding

alditol:NADP+ 1-oxidoreductase
activity

structural constituent of
chromatin

structural molecule activity

protein heterodimerization activity

nucleic acid binding

DNA binding

protein dimerization activity
organic cyclic compound binding
nucleosomal DNA binding

RNA binding

nucleosome binding

chromatin DNA binding
structural molecule activity
immunoglobulin receptor binding
antigen binding

structural constituent of skin
epidermis

signaling receptor binding
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Adj. p-
value
2.98e-07

1.04e-04
1.66e-03
1.66e-03
1.66e-03
1.90e-03
5.51e-03
1.54e-02
1.98e-02
2.47e-02
3.62e-02
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2.17e-21

9.07e-10
6.72e-09
2.89e-06
7.25e-06
4.51e-05
2.49e-04
6.31e-04
1.03e-03
3.45e-03
1.82e-02
1.81e-04
2.95e-04
8.81e-04
4.55e-03

2.61e-14

Odds
ratio

517.98

148.52

5654.64

5654.64

5654.64

31.89

1884.83

942.37

807.74

706.76

565.39

565.39

272.6

21.96
45.27
5.75
9.29
14.39
4.05
143.17
6.58
79.03
44.46
35.47
706.71
90.7
256.91

3.77
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integrin binding

molecular function regulator

activity

enzyme regulator activity
calcium ion binding
protein binding

immune receptor activity

extracellular matrix structural

constituent
actin binding

growth factor binding

binding

GTPase regulator activity
nucleoside-triphosphatase
regulator activity

cytokine binding

cytoskeletal protein binding
molecular transducer activity
signaling receptor activity
enzyme activator activity

cargo receptor activity

transmembrane receptor protein

kinase activity

carbohydrate binding

guanyl-nucleotide exchange factor
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GTPase activator activity
glycosaminoglycan binding
heparin binding

molecular function inhibitor

activity

protein tyrosine kinase activity
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8.19

3.2

3.55

4.1

2.88

8.05

7.13

4.64

7.73

2.95

4.35

4.35

7.22

3.51

3.03

3.03

3.76

7.71
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amyloid-beta binding

molecular function activator

activity

cell adhesion molecule binding

transmembrane signaling receptor

activity

cytokine receptor activity
lipoprotein particle binding
protein-lipid complex binding
enzyme binding

pattern recognition receptor

activity

protein-containing complex

binding
lipid binding

low-density lipoprotein particle

binding

peptide binding
actin filament binding

transmembrane receptor protein
tyrosine kinase activity

amide binding

chemokine binding
sulfur compound binding

transforming growth factor beta

binding

immunoglobulin binding
extracellular matrix binding
vascular endothelial growth factor
receptor activity

protein kinase activity

antigen binding

cell adhesion molecule binding

protein binding
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1.26e-03

1.29e-03

1.52e-03

2.05e-03

2.36e-03

3.07e-03

3.07e-03

4.01e-03

4.24e-03

5.44e-03

6.42e-03

7.20e-03

1.01e-02

1.39e-02

1.62e-02

1.69e-02

1.90e-02

2.95e-02

3.46e-02

3.46e-02

3.48e-02

3.57e-02

4.15e-02

2.40e-48

1.01e-04

1.21e-04

7.26

3.02

3.51

2.93

6.42

14.05

14.05

2.69

11.85

2.74

3.09

21.7

3.86

4.42

7.4

3.59

10.86

3.95

13.02

13.02

7.25

54.21

3.18

55.6

7.86

10.02
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G0:0016706

binding

structural constituent of skin
epidermis

cadherin binding

microtubule binding

structural constituent of
cytoskeleton

immunoglobulin receptor binding
cyclin-dependent protein
serine/threonine kinase regulator
activity

single-stranded DNA helicase
activity

structural molecule activity
tubulin binding

extracellular matrix structural
constituent conferring tensile
strength

KDEL sequence binding
microtubule motor activity
histone H3 demethylase activity
histone demethylase activity
protein demethylase activity

demethylase activity

2-oxoglutarate-dependent
dioxygenase activity

219

3.42e-04

5.56e-04

2.34e-03

3.48e-03

5.79e-03

8.99e-03

9.34e-03

1.34e-02

1.66e-02

1.98e-02

3.55e-02

4.11e-02

4.26e-02

7.17e-03

8.21e-03

8.21e-03

1.44e-02

3.21e-02

16.35

30.4

8.53

9.01

13.11

52.47

20.8

34.47

5.77

7.49

19.73

inf

15.26

523.5

487.38

487.38

362.36

239.46



A.11 Gene Ontology Molecular Functions (GO:MF) for Smoking

Dataset

Comparison
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0047115

0047086
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0032052

0016616
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0004032

0004303

0033764

0016628

0016229

0016709

Molecular Functions
antigen binding

alcohol dehydrogenase
(NADP+) activity

aldo-keto reductase (NADP)
activity

phenanthrene 9,10-
monooxygenase activity
indanol dehydrogenase
activity
trans-1,2-dihydrobenzene-
1,2-diol dehydrogenase
activity

ketosteroid monooxygenase
activity

androsterone
dehydrogenase activity
androstan-3-alpha,17-beta-
diol dehydrogenase activity
bile acid binding

oxidoreductase activity,
acting on the CH-OH group
of donors, NAD or NADP as
acceptor

oxidoreductase activity,
acting on CH-OH group of
donors

alditol:NADP+ 1-
oxidoreductase activity
estradiol 17-beta-
dehydrogenase [NAD(P)]
activity

steroid dehydrogenase
activity, acting on the CH-
OH group of donors, NAD or
NADP as acceptor
oxidoreductase activity,
acting on the CH-CH group
of donors, NAD or NADP as
acceptor

steroid dehydrogenase
activity

oxidoreductase activity,
acting on paired donors,
with incorporation or
reduction of molecular
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Adj. p-
value
9.97e-14

2.59e-06
5.94e-06
2.96e-05
2.96e-05

2.96e-05

9.87e-05
2.76e-04
3.55e-04
4.44e-04

4.96e-04

6.22e-04

6.51e-04

1.87e-03

5.20e-03

6.20e-03

6.55e-03

6.91e-03

Odds
ratio

641.19
3534.25

2617.7

35352

35352

35352

11783.67

5891.58

5049.86

4418.56

564.64

522.74

3534.75

1963.53

1139.9

1039.28

1009.57

981.51



FormerVsNever
Tumor up

FormerVsNever
Tumor up

FormerVsNever
Tumor up
FormerVsNever
Tumor up
FormerVsNever
Tumor up

MaleVsFemale
up
MaleVsFemale
up
MaleVsFemale
up
MaleVsFemale
up
MaleVsFemale
up
CurrentVsForme
r Normal up
CurrentVsNever
Normal up
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down
TumorVsNormal
down

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

GO:

0016655

0016627

0033293

0016651

0047042

0141052

0032452

0140457
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0005515

0005102

0005178

0098772
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0140375
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0030234

0019955

0019838

oxygen, NAD(P)H as one
donor, and incorporation of
one atom of oxygen
oxidoreductase activity,
acting on NAD(P)H, quinone
or similar compound as
acceptor

oxidoreductase activity,
acting on the CH-CH group
of donors

monocarboxylic acid binding

oxidoreductase activity,
acting on NAD(P)H
androsterone
dehydrogenase (B-specific)
activity

histone H3 demethylase
activity

histone demethylase
activity

protein demethylase
activity

demethylase activity

2-oxoglutarate-dependent
dioxygenase activity
flavonoid 3'-
monooxygenase activity
flavonoid 3'-
monooxygenase activity
protein binding

signaling receptor binding
integrin binding

molecular function regulator
activity

calcium ion binding

immune receptor activity
extracellular matrix
structural constituent
enzyme regulator activity

cytokine binding

growth factor binding
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3.51e-11

1.40e-10
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1.28e-08

1.53e-07

2.15e-07

4.29e-07

642.27

551.88

452.74

410.58

inf

475.9

443.07

443.07

329.41

217.69

inf

inf

5.02

5.51

12.48

4.43

5.72

10.64

9.82

4.46

9.86

10.09
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cytoskeletal protein binding
binding

actin binding

carbohydrate binding

cell adhesion molecule
binding

molecular function inhibitor
activity

cargo receptor activity

signaling receptor activity

molecular transducer
activity
amyloid-beta binding

transmembrane receptor
protein kinase activity
heparin binding

glycosaminoglycan binding
lipid binding

transmembrane signaling
receptor activity
enzyme inhibitor activity

cytokine receptor activity
sulfur compound binding

molecular function activator
activity
peptide binding

amide binding

protein-containing complex
binding
extracellular matrix binding

prostaglandin receptor
activity

transforming growth factor
beta binding

signaling receptor regulator
activity
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4.14e-03
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1.22e-02
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4.65

5.13

5.7

6.66

5.2

5.34

11.33

4.04
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11.36

11.02

7.42

6.42

4.28

3.93

5.2

8.91

5.82

3.96

5.28
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3.64

10.64

47.71

19.11
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0004222

0015631

0010997
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scavenger receptor activity
prostanoid receptor activity

low-density lipoprotein
particle binding
enzyme activator activity

cytokine receptor binding
collagen binding

protein-lipid complex
binding
lipoprotein particle binding

antigen binding

structural constituent of
chromatin
structural molecule activity

protein heterodimerization
activity

cell adhesion molecule
binding

microtubule binding

protein dimerization activity
cadherin binding
microtubule motor activity

extracellular matrix
structural constituent
extracellular matrix
structural constituent
conferring tensile strength
metalloendopeptidase
activity

tubulin binding

anaphase-promoting

complex binding
binding
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1.81e-02

2.40e-02

3.23e-02

3.72e-02

4.14e-02

4.43e-02

4.98e-02

4.98e-02

2.55e-66

4.69e-26
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6.97e-08

6.10e-05

6.27e-05

5.98e-04

9.18e-04

1.28e-03

1.33e-03

3.59e-03

2.51e-02

3.34e-02

4.79e-02

11.21

38.17

24.75

4.2

5.09

8.87

15.08

15.08

84.53

56.59

8.34

12.88

9.44

10.67

6.43

9.1

20.46

12.11

26.44

14.39

7.41

84

8.96
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